Multi-moment maps for special Ricci-flat metrics

Andrew Swann

Department of Mathematics, Centre for Quantum Geometry of Moduli Spaces,
and DIGIT, University of Aarhus
swann@math.au.dk

Regensburg, September 2018

Joint work with Thomas Bruun Madsen: arXiv:1803.06646, …
Outline

1. Ricci-flat special holonomy

2. Multi-Hamiltonian torus actions

3. Singular orbits and topological quotients
 - Flat models
 - General

4. Realisation via multi-moment maps
 - Flat model
 - General case
The Berger holonomy classification 1955,…, has only the following non-trivial irreducible Ricci-flat geometries

<table>
<thead>
<tr>
<th>Name</th>
<th>Group</th>
<th>Dimension</th>
<th>Form degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calabi-Yau</td>
<td>SU(n)</td>
<td>2n</td>
<td>2, n, n</td>
</tr>
<tr>
<td>HyperKähler</td>
<td>Sp(n)</td>
<td>4n</td>
<td>2, 2, 2</td>
</tr>
<tr>
<td>G_2 holonomy</td>
<td>G_2</td>
<td>7</td>
<td>3, 4</td>
</tr>
<tr>
<td>Spin(7) holonomy</td>
<td>Spin(7)</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

In the presence of symmetries, moment map techniques from symplectic geometry may be used if there is a closed form of degree 2, yielding many examples.
Toric Calabi-Yau

Include symplectic quotients of \mathbb{C}^N by subtori of T^N whose weights sum to zero.

$$\mathbb{C}^4 \sslash \text{diag}(e^{i\theta}, e^{i\theta}, e^{-i\theta}, e^{-i\theta}) = (\mathcal{O}(-1) \oplus \mathcal{O}(-1) \rightarrow \mathbb{C}P(1))$$

Hypertoric manifolds

Include hyperKähler quotients of \mathbb{H}^N by subtori of T^N.

$$T^*\mathbb{C}P(n) = \mathbb{H}^{n+1} \sslash e^{i\theta} \mathbb{1}_{n+1}$$
Other constructions

On the other hand there are complete special holonomy metrics not obtained in such a way. These include the first complete examples found by Bryant and Salamon (1989)

<table>
<thead>
<tr>
<th>M^7</th>
<th>$\Lambda^2(S^4)$</th>
<th>$\Lambda^2(\mathbb{C}P^2)$</th>
<th>$S^3 \times \mathbb{R}^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isom$_0$</td>
<td>Sp(2)</td>
<td>SU(3)</td>
<td>SU(2) \times SU(2) \times U(1)</td>
</tr>
<tr>
<td>rank(Isom)</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

for G_2, and the Spin-bundle of S^4, Isom$_0 = \text{SO}(5) \times U(1)$ of rank 3, for Spin(7).

Aim

Exploit forms of higher degree in such cases

Note: on compact manifolds, Ricci-flat implies that Killing vector fields are parallel and so the holonomy reduces. We will thus be interested in the non-compact situation.
(M, α) a manifold with a closed α ∈ Ω^p(M) preserved by G = T^n is *multi-Hamiltonian* if it there is a G-invariant

\[\nu: M \to \Lambda^{p-1} g^* \cong \mathbb{R}^N, \]

\[d\langle \nu, X_1 \wedge \cdots \wedge X_{p-1} \rangle = \alpha(X_1, \ldots, X_{p-1}, \cdot) \]

for all \(X_i \in g\).

- For \(p = 2\) this is an ordinary symplectic moment map.
- \(\nu}\) invariant \(\iff\) \(\alpha\) pulls-back to 0 on each \(T^n\)-orbit
- \(b_1(M) = 0 \iff\) each \(T^n\)-action preserving \(\alpha\) is multi-Hamiltonian

More generally, we can consider several closed invariant forms \(\alpha_k \in \Omega^{p_k}(M)\) with multi-moment maps \(\nu_k\) and consider their product

\[\nu = (\nu_1, \ldots, \nu_m): M \to \bigoplus_{k=1}^m \Lambda^{p_k-1} g^* \]
An interesting case is when

\[\nu: M \to \mathbb{R}^N \]

is of full rank on the part \(M_0 \) of \(M \) where \(G = T^n \) acts freely, and

\[N = \dim(M_0/G). \]

Then \(\nu \) locally exhibits \(M_0 \) as a principal \(T^n \)-bundle over \(U \subset \mathbb{R}^N \).

<table>
<thead>
<tr>
<th>Geometry</th>
<th>(\dim M)</th>
<th>(\deg \alpha)</th>
<th>(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symplectic/Kähler</td>
<td>2n</td>
<td>2</td>
<td>(T^n)</td>
</tr>
<tr>
<td>Calabi-Yau</td>
<td>2n</td>
<td>(2, (n, n))</td>
<td>(T^{n-1})</td>
</tr>
<tr>
<td>HyperKähler</td>
<td>4n</td>
<td>(2, 2, 2)</td>
<td>(T^n)</td>
</tr>
<tr>
<td>(G_2)</td>
<td>7</td>
<td>(3, 4)</td>
<td>(T^3)</td>
</tr>
<tr>
<td>Spin(7)</td>
<td>8</td>
<td>4</td>
<td>(T^4)</td>
</tr>
</tbody>
</table>
Flats models

The flat symplectic/Kähler model is

- $M = \mathbb{C}^n$
- $\alpha = \omega = \sum_{k=1}^{n} dx_k \wedge dy_k = \frac{i}{2} \sum_{k=1}^{n} dz_k \wedge d\bar{z}_k = \frac{i}{2} \sum_{k=1}^{n} dz_k \bar{z}_k$
- $G = T^n = \{ \text{diag}(e^{i\theta_1}, \ldots, e^{i\theta_n}) \}$
- $\nu = \mu = (\mu_1, \ldots, \mu_n)$

$$\mu_k = \frac{1}{2} |z_k|^2$$

We have

$$\mu(\mathbb{C}^n) = [0, \infty)^n$$

and μ induces a homeomorphism

$$\mathbb{C}^n / T^n \rightarrow [0, \infty)^n$$

But the latter is a manifold with corners.
Flat models, continued

For G_2 the flat model is

- $M = S^1 \times \mathbb{C}^3$
- $\alpha = (\varphi, \ast \varphi)$

\[
\varphi = \frac{i}{2} dx(dz_{1\bar{1}} + dz_{2\bar{2}} + dz_{3\bar{3}}) + \text{Re}(dz_{123})
\]

\[
\ast \varphi = \text{Im}(dz_{123})dx - \frac{1}{8}(dz_{1\bar{1}} + dz_{2\bar{2}} + dz_{3\bar{3}})^2
\]

- $G = T^3 = S^1 \times T^2 = S^1 \times \{\text{diag}(e^{i\theta_1}, e^{i\theta_2}, e^{i\theta_3}) \mid \theta_1 + \theta_2 + \theta_3 = 0\}$

For Calabi-Yau the flat model is

- $M = \mathbb{C}^n$
- $\alpha = (\omega, \text{Re} \, \Omega, \text{Im} \, \Omega)$, \quad $\omega = \frac{i}{2} \sum_{k=1}^{n} dz_{k\bar{k}}$, \quad $\Omega = dz_{12}...n$
- $G = T^{n-1} = \text{diagonal unitary matrices of determinant 1}$
Orbit spaces

For the G_2 case

$$M/G = (S^1 \times \mathbb{C}^3) / (S^1 \times T^2) = \mathbb{C}^3 / T^2 = \text{cone}(S^5) / T^2 = \text{cone}(S^5 / T^2)$$

And for the Calabi-Yau case

$$M/G = \mathbb{C}^n / T^{n-1} = \text{cone}(S^{2n-1} / T^{n-1})$$

$$S^{2n-1} = \left\{ (r_1 e^{it_1}, \ldots, r_{n-1} e^{it_{n-1}}) \mid r_k \geq 0 \ \forall k, \ \sum_{k=1}^{n-1} r_k^2 = 1 \right\}$$

Each T^{n-1}-orbit contains an element with $t_1 = t_2 = \cdots = t_{n-1}$ and that element is unique modulo $2\pi / n$ unless some r_k is zero.
Thus S^{2n-1}/T^{n-1} projects on to

$$\left\{(r_1^2, \ldots, r_{n-1}^2) \left| r_k \geq 0, \sum_{k=1}^{n-1} r_k^2 = 1 \right. \right\} = \Delta^{n-1} \equiv B^{n-1}$$

with fibres circles over the interior, and points over the boundary. It follows that S^{2n-1}/T^{n-1} is homeomorphic to

$$\left\{(z, x) \in \mathbb{C} \times \mathbb{R}^{n-1} \left| |z|^2 + \|x\|^2 = 1 \right. \right\} = S^n$$

and $M/G = \mathbb{C}^n/T^{n-1}$ is homeomorphic to

$$\text{cone}(S^n) = \mathbb{R}^{n+1}$$
Theorem

For all the multi-Hamiltonian geometries considered, the torus actions has the property that every stabiliser is a connected subtorus. Local models around any special orbit with stabiliser T^k are given by $(T^k \times \mathbb{R}^k) \times V$ where V is a flat model.

For example, in the Calabi-Yau case suppose $\dim \text{Stab}_{T^{n-1}}(p) = k$. Then there are $n - 1 - k$ directions U_1, \ldots, U_{n-1-k} tangent to the orbit through p. But ω pulls-back to 0 on the orbit, so the U_i are linearly independent over \mathbb{C}. Now $\text{Stab}_{T^{n-1}}(p)$ is an Abelian group acting on $T_p M = \mathbb{C}^n$ as a subgroup of $\text{SU}(n)$ and fixing a \mathbb{C}^{n-1-k} pointwise, so a subgroup of $\text{SU}(k+1)$. But this forces it to be a maximal torus.

Corollary

For the Calabi-Yau, hyperKähler, G_2 and Spin(7) cases, M/G is homeomorphic to a smooth manifold.

via $\exp_p : T_p M \rightarrow M$
For G_2 the flat model is

- $M = S^1 \times \mathbb{C}^3$, $\alpha = (\varphi, \ast \varphi)$

$$\varphi = \frac{i}{2} dx (dz_{1\bar{1}} + dz_{2\bar{2}} + dz_{3\bar{3}}) + \text{Re}(dz_{123})$$

$$\ast \varphi = \text{Im}(dz_{123}) dx - \frac{1}{8} (dz_{1\bar{1}} + dz_{2\bar{2}} + dz_{3\bar{3}})^2$$

- $G = T^3 = S^1 \times T^2$ generators

$$U_1 = \frac{\partial}{\partial x}, \quad U_k = 2 \text{Re} \left(i \left(z_k \frac{\partial}{\partial z_k} - z_3 \frac{\partial}{\partial z_3} \right) \right), \quad k = 2, 3$$

- $\nu = (\nu_1, \nu_2, \nu_3, \nu_0)$

$$d\nu_i = \varphi(U_j, U_k, \cdot) \quad (ijk) = (123), \quad d\nu_0 = \ast \varphi(U_1, U_2, U_3, \cdot)$$

$$\nu_0 + i\nu_1 = -i z_1 z_2 z_3, \quad 2\nu_2 = |z_2|^2 - |z_3|^2, \quad 2\nu_3 = |z_3|^2 - |z_1|^2$$
Proposition

In the G_2 flat model, $\nu: M = S^1 \times \mathbb{C}^3 \to \mathbb{R}^4$

$$\nu_0 + i\nu_1 = -iz_1z_2z_3, \quad 2\nu_2 = |z_2|^2 - |z_3|^2, \quad 2\nu_3 = |z_3|^2 - |z_1|^2$$

induces a homeomorphism $M/G = \mathbb{C}^3/T^2 \to \mathbb{R}^4$.

This also applies to the Spin(7)-case. Similar results hold in the hyperKähler and Calabi-Yau cases.

Main point: for $t = |z_3|^2$, $c = \nu_0^2 + \nu_1^2$, satisfies $f(t) := t(t - 2\nu_3)(t + 2\nu_2) = c$

with each factor ≥ 0.

$(t, \nu) \mapsto \nu$ is a continuous bijection

$\mathbb{R}^4 = \mathbb{C}^3/T^2 \to \mathbb{R}^5 \to \mathbb{R}^4$, so a

domain.

homeomorphism, by Brouwer’s invariance of
Theorem

For multi-Hamiltonian G_2, Spin(7) and hyperKähler cases the multi-moment map ν induces local homeomorphisms

$$M/G \to \mathbb{R}^N$$

Also know it holds for Calabi-Yau cases when $n \leq 3$.

Ingredients in proof

- properties of commuting Killing vectors at zeros
- high-order approximation by the flat model
- local understanding of image sets of singular locus
- local injectivity argument at a point
- topological degree argument combined with deformation to flat model
Commuting Killing vector fields

X Killing implies

- ∇X is a skew-symmetric endomorphism of TM
- $\nabla^2_{A,B}X = -R_{X,A}B$

So $X_p = 0$ implies $(\nabla^2 X)_p = 0$ and $(\nabla^3 X)_p = -(R \circ \nabla X)_p$.

If X, Y are Killing, commute and $X_p = 0$, then

- ∇X and ∇Y commute at p.

G_2 case, with $\text{Stab}_{T_3}(p) = T^2$, $T_p M = \mathbb{R} \oplus \mathbb{C}^3$. Can choose our generators so that U_2, U_3 are zero at p with covariant derivatives

$$
(\nabla U_2)_p = \text{diag}(i, 0, -i), \quad (\nabla U_3)_p = \text{diag}(0, i, -i).
$$

Let U be any generator that is non-zero at p. Then $\nabla U \in \mathfrak{g}_2$ and ∇U commutes with ∇U_i, $i = 1, 2$. But rank $\mathfrak{g}_2 = 2$, so can adjust U to get at p U_1 unit length in \mathbb{R} and $\nabla U_1 = 0$.

High-order approximation

G_2 case, $\text{Stab}_{T^3}(p) = T^2$. At p, can ensure φ and $\ast \varphi$ agree with the flat model,

$$U_2 = 0 = U_3, \quad \nabla U_1 = 0, \quad \nabla^2 U_2 = 0 = \nabla^2 U_3$$

and $U_1, \nabla U_2, \nabla U_3$ agree with the flat model.

Now $d\nu_i = \varphi(U_j, U_k, \cdot), (ijk) = (123)$, and $d\nu_0 = \ast \varphi(U_1, U_2, U_3, \cdot)$. But $\nabla \varphi = 0 = \nabla \ast \varphi$, so

$$\nabla^r \nu_i = \varphi(\nabla^{s_1} U_j, \nabla^{s_2} U_k, \cdot), \quad r = s_1 + s_2 + 1, \ (ijk) = (123)$$

$$\nabla^r \nu_0 = \ast \varphi(\nabla^{s_1} U_1, \nabla^{s_2} U_2, \nabla^{s_3} U_3, \cdot), \quad r = s_1 + s_2 + s_3 + 1.$$

Lemma

At p,

- ν_2, ν_3 agree with the flat model to order 3,
- ν_0, ν_1 agree with the flat model to order 4.
Image of singular locus

\[G_2 \text{ case} \]

\[d\nu_1 = \varphi(U_2, U_3, \cdot), \quad d\nu_2 = \varphi(U_3, U_1, \cdot) \]
\[d\nu_3 = \varphi(U_1, U_2, \cdot), \quad d\nu_0 = \ast\varphi(U_1, U_2, U_3, \cdot) \]

If \(U_1 \) vanishes on a collection of singular orbits, then \(\nu_2, \nu_3 \) and \(\nu_0 \) are locally constant on that collection.

- \(T^2 \) stabiliser \(\mapsto \) a point in \(\mathbb{R}^4 = \mathbb{R}^3 \times \mathbb{R} \)
- \(S^1 \) stabiliser \(\mapsto \) lines in \((\nu_0 = \text{constant}) \) of rational slope
- Any intersection is triple, with the primitive slope vectors summing to zero

Thus we get a collection of trivalent graphs.
Complete G_2 Examples

Example

Flat model $S^1 \times \mathbb{C}^3$: planar

Example

Bryant-Salamon metrics on $S^3 \times \mathbb{R}^4$: non-planar
Example

Foscolo et al. (2018) examples on $M_{m,n}$ have $M_{m,n}$ a circle bundle over the canonical bundle of $\mathbb{CP}^1 \times \mathbb{CP}^1$ with first Chern class $(m, -n)$ over the zero section, symmetry group $\text{SU}(2) \times \text{SU}(2) \times S^1$:

Primitive directions

$(m - n, 0, n)$

$(0, n - m, m)$

$(n - m, m - n, -m - n)$

planar
Explicit metrics with special holonomy

Full holonomy G_2

\[g = \frac{1}{\nu_0} (\theta_1^2 + \theta_2^2 + \theta_3^2) + \nu_0^2 (d\nu_1^2 + d\nu_2^2 + d\nu_3^2) + \nu_0^3 d\nu_0^2 \]

\[d\theta_i = d\nu_j \wedge d\nu_k, \quad (ijk) = (123) \]

Full holonomy $\text{Spin}(7)$

\[g = \frac{1}{\nu_1} \theta_0^2 + \frac{1}{\nu_2} \theta_1^2 + \frac{1}{\nu_3} \theta_2^2 + \frac{1}{\nu_0} \theta_3^2 \]

\[+ \nu_2 \nu_3 \nu_0 d\nu_0^2 + \nu_1 \nu_3 \nu_0 d\nu_1^2 + \nu_1 \nu_2 \nu_0 d\nu_2^2 + \nu_1 \nu_2 \nu_3 d\nu_3^2 \]

\[d\theta_0 = -\nu_2 d\nu_{23}, \quad d\theta_1 = -\nu_3 d\nu_{03}, \quad d\theta_2 = -\nu_0 d\nu_{01}, \quad d\theta_3 = \nu_1 d\nu_{12} \]
References I

