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Abstract

HYPERKÄHLER AND QUATERNIONIC KÄHLER GEOMETRY

Andrew F. Swann

Oriel College, Oxford

Thesis submitted Hilary Term, 1990, in support of application to

supplicate for the degree of D. Phil.

A quaternion-Hermitian manifold, of dimension at least 12, with closed funda-

mental 4-form is shown to be quaternionic Kähler. A similar result is proved for

8-manifolds.

HyperKähler metrics are constructed on the fundamental quaternionic line

bundle (with the zero-section removed) of a quaternionic Kähler manifold (indefi-

nite if the scalar curvature is negative). This construction is compatible with the

quaternionic Kähler and hyperKähler quotient constructions and allows quater-

nionic Kähler geometry to be subsumed into the theory of hyperKähler manifolds.

It is shown that the hyperKähler metrics that arise admit a certain type of SU(2)-

action, possess functions which are Kähler potentials for each of the complex struc-

tures simultaneously and determine quaternionic Kähler structures via a variant of

the moment map construction. Quaternionic Kähler metrics are also constructed

on the fundamental quaternionic line bundle and a twistor space analogy leads to

a construction of hyperKähler metrics with circle actions on complex line bundles

over Kähler-Einstein (complex) contact manifolds.

Nilpotent orbits in a complex semi-simple Lie algebra, with the hyperKähler

metrics defined by Kronheimer, are shown to give rise to quaternionic Kähler met-

rics and various examples of these metrics are identified. It is shown that any

quaternionic Kähler manifold with positive scalar curvature and sufficiently large

isometry group may be embedded in one of these manifolds. The twistor space

structure of the projectivised nilpotent orbits is studied.
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Chapter 1

INTRODUCTION AND DEFINITIONS

A hyperKähler manifold is a Riemannian 4n-manifold with a family of almost

complex structures which behave under composition like the multiplicative, pure-

imaginary, unit quaternions and which are covariantly constant with respect to the

Levi-Civita connection. If we only require that these almost complex structures

exist locally and that the Levi-Civita connection preserves this family as a whole,

then we obtain a quaternionic Kähler structure, at least if n > 2. Thus hyperKähler

manifolds are a special case of quaternionic Kähler manifolds. However, note that

quaternionic Kähler manifolds need not be Kähler.

HyperKähler and quaternionic Kähler manifolds are special classes of Einstein

manifolds. From this viewpoint it is natural to try and construct Einstein met-

rics on bundles over these manifolds. Einstein metrics on certain sphere bundles

over homogeneous manifolds, for example, were constructed by Jensen (1973) and

more recently Page & Pope (1986) discussed the Einstein equations on quaternionic

line bundles. We look for special solutions of these equations which carry infor-

mation about a quaternionic Kähler base manifold. In Chapter 2 we construct

hyperKähler and quaternionic Kähler metrics on the Z/2-quotient U(M) of the

natural quaternionic line bundle associated to a quaternionic Kähler manifold M .

These constructions are generalisations of fibrations

H \ 0 −→ H
n+1 \ 0 −→ HP(n)

H \ 0 −→ HP(n+ 1) \HP(n) −→ HP(n).

1



1. Introduction 2

In four-dimensional geometry, hyperKähler manifolds are already well-known

under a different name: they are Ricci-flat self-dual spaces. Quaternionic Kähler

manifolds are then a higher dimensional generalisation of self-dual Einstein mani-

folds. These 4-manifolds possess twistor spaces which are complex 3-folds encod-

ing the conformal structure of the original manifolds in holomorphic data. Sala-

mon (1982) showed that higher dimensional twistor spaces are associated to any

quaternionic Kähler manifold and the inverse of this twistor construction has been

studied by LeBrun (1989) and Pedersen & Poon (1989).

The manifold U(M) with its hyperKähler metric may be regarded as a gen-

eralised twistor space, the geometry of M now being encoded in triholomorphic

data. In Chapter 3 we discuss the inverse construction which produces a quater-

nionic Kähler manifold from a hyperKähler manifold admitting a certain type of

SU(2)-action. The construction is a variation of the Marsden-Weinstein symplectic

reduction procedure: this produces a symplectic manifold of dimension k− 2 dimG

from a symplectic k-manifold N and an action of a Lie group G on N which pre-

serves the symplectic structure. This reduction also applies to Kähler manifolds, and

Hitchin et al. (1987) showed how it could be generalised to hyperKähler manifolds

(this time the dimension is reduced by four times dimG). Galicki & Lawson (1988)

produced a quaternionic Kähler version of this moment map construction and in

Chapter 3 we see that quaternionic Kähler and hyperKähler quotients are compat-

ible with our construction of U(M), that is, the associated bundle U of the quater-

nionic Kähler quotient of M by G may be obtained as the hyperKähler quotient

of U(M). Thus quaternionic Kähler 4n-manifolds may be studied in terms of spe-

cial types of hyperKähler (4n+4)-manifolds. Since the product of two hyperKähler

manifolds is again hyperKähler, this enables us to construct a quaternionic Kähler

manifold J (M1,M2) of dimension 4 + dimM1 + dimM2 from two quaternionic

Kähler manifolds M1,M2. An interpretation of the quaternionic Kähler quotient
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construction in terms of twistor spaces will be discussed in Chapter 4. Moment

maps for circle actions on hyperKähler manifolds are intimately related to Kähler

potentials. In Chapter 3 we see that the particular type of SU(2)-action required

above gives rise to a function which is simultaneously a Kähler potential for each

complex structure.

HyperKähler metrics are essentially distinguished from more general quater-

nionic Kähler ones by having zero scalar curvature. The hyperKähler metrics

on U(M) are a special case of the quaternionic Kähler metrics and arise as a limit

as the scalar curvature tends to zero. In this setting, the underlying quaternionic

structure of U(M) contains Einstein metrics with both zero and non-zero Ricci ten-

sors, a phenomenon which in four-dimensions only occurs when the underlying space

is conformally flat (Brinkman, 1925). When M is Gr2(C
n), M may be regarded

as a quaternionic Kähler quotient of HP(n − 1) by U(1), and so U(Gr2(C
n)) is a

hyperKähler quotient of flat space H
n by the circle. It is well-known that this par-

ticular hyperKähler quotient may be deformed so as to produce the hyperKähler

metric on T ∗
CP(n−1) constructed by Calabi (1979). Thus the hyperKähler metric

on U(Gr2(C
n)) also arises as a limit of complete hyperKähler metrics.

The compact homogeneous quaternionic Kähler manifolds were studied by

Wolf (1965). The associated bundles for these manifolds may be interpreted as

orbits of highest roots in the Lie algebra of the complexified isometry group. In

Chapter 4, we study the nilpotent orbits of a complex, semi-simple Lie group and

see that these are always associated bundles U(M). We show that the quaternionic

Kähler manifolds lie in a certain subvariety of the Grassmannian of three-planes

in the real Lie algebra. In general, these manifolds are not complete, but vari-

ous examples may be described in terms of finite quotients of Wolf spaces. The

twistor spaces of these manifolds are just the projectivised nilpotent orbits and the

twistor space of any quaternionic Kähler manifold, with positive scalar curvature
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and sufficiently large isometry group will arise in this way.

The holonomy groups of irreducible Riemannian manifolds were classified by

Berger (1955) and Alekseevskĭı (1968). For spaces which are not locally symmet-

ric, they obtained the families SO(n), U(n), SU(n), Sp(n) Sp(1), Sp(n) and two

exceptional groups G2 and Spin(7) (which can only occur in dimensions 7 and

8, respectively). Simons (1962) observed that these were most of the simply-

connected groups which act transitively on the finite-dimensional spheres. The

group SO(n) corresponds to generic geometry; U(n) and SU(n) give Kähler and

special Kähler manifolds; and Sp(n) Sp(1) and Sp(n) correspond to quaternionic

Kähler and hyperKähler geometries, respectively. Complete, non-symmetric met-

rics with holonomy either G2 or Spin(7) have now been constructed by Bryant &

Salamon (1989). Each of the above geometries is given by invariant parallel differ-

ential forms: U(n) holonomy is given by a Kähler 2-form; special Kähler manifolds

possess a parallel complex volume form in addition to the Kähler form; quaternionic

Kähler manifolds have a fundamental 4-form; hyperKähler metrics are given by a

quaternion-valued 2-form; holonomy G2 is determined by a 3-form and Spin(7) met-

rics have an invariant parallel 4-form. In the cases of G2 and Spin(7), there are

simple criteria in terms of exterior derivatives for these forms to define structures

with the required holonomy. For hyperKähler structures, Hitchin (1987) shows that

it is sufficient for the quaternionic 2-form to be closed. In Chapter 5, we show that

for a manifold of dimension at least 12, the holonomy is contained in Sp(n) Sp(1)

if and only if the fundamental 4-form is closed. Thus to construct a quaternionic

Kähler metric on a manifold of dimension at least 12, it is sufficient to find a 4-form

of the correct algebraic type and show that this 4-form is closed. This result forms

the basis of many of our constructions, but its proof bears little relation to the

applications and so it is delayed to a self-contained part of Chapter 5.

The reader is referred to Kobayashi & Nomizu (1963) and Griffiths & Harris
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(1978) for standard terminology from differential and algebraic geometry. Manifolds

will be taken to be smooth (C∞), second countable and connected, unless otherwise

stated.

1.1 HyperKähler Manifolds

An almost complex structure on a manifold M is an endomorphism J ∈ End(TM)

of the tangent bundle such that J2 = −1. This makes each TxM into a complex

vector space and forces M to be even-dimensional.

Suppose M admits two anti-commuting, almost complex structures I and J ,

so we have I2 = −1 = J2 and IJ = −JI. If we define K = JI then K2 = −1, so

K is also an almost complex structure. In fact, M has a family I of almost complex

structures parameterised by the space S2 of unit imaginary quaternions in ImH;

since, if ai+ bj + ck ∈ S2, then

(aI + bJ + cK)2 = −(a2 + b2 + c2) = −1.

We may define a left action of H on TxM by

(α+ βi+ γj + δk) ·X = αX + βIX + γJX + δKX,

for X ∈ TxM and α, β, γ, δ ∈ R. So TxM is a left H-module and, in particular,

its real dimension is a multiple of 4. If, in addition, M has a pseudo-Riemannian

metric g which is preserved by I and J , then for each A ∈ I we may define a 2-form

ωA on M by

ωA(X,Y ) = g(X,AY ),

for each X,Y ∈ TxM .
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Definition 1.1.1. A (pseudo-) Riemannian manifold M is (pseudo-) hy-

perKähler if it has a pair of anti-commuting almost complex structures I

and J which preserve the metric and are such that

dωI = dωJ = dωK = 0, (1.1.1)

where ωA is defined above and K = IJ .

Note that ωA is non-degenerate, so (1.1.1) is just the requirement that ωA is

a symplectic form for each A ∈ I. We may put these three conditions into one, by

defining a quaternion-valued 2-form ω ∈ Ω2(M,H)

ω = ωI i+ ωJj + ωKk

and requiring that dω = 0. Note that this definition only depends on I and so could

be studied in the language of bunches of forms, see Gindikin (1982a,b, 1986).

The basic example of a hyperKähler manifold is flat space H
n, or more gener-

ally H
n∗/Γ = (Hn \{0})/Γ, for Γ a finite subgroup of SU(2). An important case for

us will be the quotient H∗/Z2 = R>0 × RP(3). Examples of compact hyperKähler

manifolds are provided by K3 surfaces, which are complex surfaces with first betti

number b1 = 0 and first Chern class c1 = 0 (see Calabi, 1980). Compact examples

in higher dimensions have been constructed by Fujiki (1983), Mukai (1984) and

Beauville (1983). Closely related to K3 surfaces are the Enriques surfaces; these

are complex surfaces with b1 = 0 and 2c1 = 0 (see Hitchin, 1974). However, in

general, Enriques surfaces are only locally hyperKähler. Calabi (1979) gives exam-

ples of hyperKähler structures on cotangent bundles of certain spaces, for example

T ∗
CP(n), and hyperKähler metrics have been shown to exist on various moduli

spaces of solutions of the Yang-Mills equations. These will be discussed later, but
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one important case is the result of Kronheimer (1988, 1989b) that both the nilpo-

tent and semi-simple orbits of a semi-simple complex Lie algebra are hyperKähler.

The Calabi metric on T ∗
CP(n) is then an example of a hyperKähler metric on a

semi-simple orbit in su(n + 1,C). Note that any Ricci-flat, self-dual 4-manifold is

locally hyperKähler (see Besse, 1987; the definition of self-duality will be given later

in the chapter).

If N is a complex manifold, the complex structure on N gives rise to an almost

complex structure J ∈ End(TN) (see Wells, 1979). An almost complex structure J

on N is said to be integrable if it comes from some complex structure on N . The

torsion of an almost complex structure J is defined by

N(X,Y ) = 2{[JX, JY ]− [X,Y ]− J [X, JY ]− J [JX, Y ]}

for each X,Y ∈ TN . The relationship between the torsion and integrability

of J is given by the following theorem, proofs of which may also be found in

Hörmander (1966) and Kohn (1963).

Theorem 1.1.2. (Newlander & Nirenberg, 1957) An almost complex

structure J on N is integrable if and only if its torsion vanishes. �

The definition of a hyperKähler manifold should be compared with that for a

Kähler manifold. In the Kähler case, we have only one almost complex structure I

and require that dωI = 0 and that I is integrable. The integrability requirement

does not enter the definition of hyperKähler manifold as we have the following

lemma.

Lemma 1.1.3. (Hitchin, 1987) On a pseudo-Riemannian manifold M

with almost complex structures I, J and K as above, I, J and K are

integrable if dω = 0, i.e. if M is pseudo-hyperKähler. �
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In future, when we talk about a manifold with almost complex structures I, J

and K we will require that they satisfy the relations

I2 = −1 = J2 IJ = −JI = K.

1.2 Other Quaternionic Geometries

A 4n-dimensional manifold M is said to be almost quaternionic if there is a sub-

bundle G of End(TM) such that for each x ∈ M there is a neighbourhood U over

which G|U has a basis {I, J,K} of almost complex structures with K = IJ = −JI.

Note that this is only a local basis. If M is Riemannian, the metric g is said to be

compatible with G if

g(AX,AY ) = g(X,Y ),

for each X,Y ∈ TxM and A ∈ Gx such that A2 = −1. We can construct a

compatible metric g from any Riemannian metric g′ by defining

g(X,Y ) = 1
4 (g

′(X,Y ) + g′(IX, IY ) + g′(JX, JY ) + g′(KX,KY )).

An almost quaternionic manifold with a compatible metric is called a quaternion-

Hermitian manifold.

On a quaternion-Hermitian manifold (M,G, g) we have an isometric embedding

G → Λ2T ∗M , given by Ax 7→ (ωA)x. If I, J,K is a local basis of G as above, we

define the fundamental 4-form of M by

Ω = ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK .

This is a non-degenerate form which is well-defined globally.

If dimM is at least 8, we are now in a position to say what is meant by a

quaternionic Kähler structure on M . The definition for 4-manifolds will be given

later.
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Definition 1.2.1. If n > 1, a 4n-dimensional quaternion-Hermitian man-

ifold is quaternionic Kähler if ∇Ω = 0, where ∇ is the Levi-Civita connec-

tion.

This immediately implies that Ω is closed and, since

∇Ω = 2(∇ωI ∧ ωI +∇ωJ ∧ ωJ +∇ωK ∧ ωK),

the condition∇Ω = 0 implies that the Riemannian connection preserves the subbun-

dle G of Λ2T ∗M . The following result will be used in constructions of quaternionic

Kähler metrics in later chapters. However, its proof can be safely delayed until

Chapter 5 since it is does not depend on those results.

Theorem 1.2.2. If M is a quaternion-Hermitian manifold of dimension

at least 12, then dΩ determines ∇Ω. In particular, dΩ = 0 implies ∇Ω = 0

and that M is quaternionic Kähler.

A quaternion-Hermitian 8-manifold is quaternionic Kähler if and only

if the fundamental 4-form Ω is closed and the algebraic ideal generated by

the subbundle G of Λ2T ∗M is a differential ideal.

It is not known whether there exist compact quaternion-Hermitian 8-manifolds for

which dΩ vanishes but ∇Ω is non-zero.

Let the group Sp(n) be defined by

Sp(n) = {A ∈Mn(H) : ĀtA = 1 },

where Mn(H) denotes the quaternionic n × n-matrices and Āt is the conjugate

transpose of A. We let (A, q) ∈ Sp(n)× Sp(1) act on ξ ∈ H
n by

(A, q) · ξ = Aξq̄.
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Now (−A,−q) acts as (A, q), so we have an induced action of Sp(n) Sp(1) =

Sp(n)×Z2 Sp(1) on H
n which exhibits Sp(n) Sp(1) as a subgroup of SO(4n).

The definition of a quaternionic Kähler manifold is equivalent to the require-

ment that the linear holonomy group (see Kobayashi & Nomizu, 1963) is contained

in the subgroup Sp(n) Sp(1) of SO(4n). Alekseevskĭı (1968) shows that this im-

plies M is an Einstein manifold. In particular, if we regard the curvature tensor R

of M as a self-adjoint endomorphism of Λ2T ∗M , then

R|G = λ idG , (1.2.1)

where λ is a positive multiple of the scalar curvature κ of M (see also Ishihara,

1974).

If M is 4-dimensional, then ∇Ω = 0 is automatically satisfied, since Ω is just

three times the volume form. However, there is an extension of the definition of

quaternionic Kähler manifold. Suppose M is an oriented, Riemannian 4-manifold

with volume form ν. The Hodge star operator ∗ : ΛrT ∗M → Λ4−rT ∗M is defined

by α ∧ β = g(α, β)ν, for α, β ∈ ΛrT ∗M . For r = 2, ∗2 = 1 and Λ2T ∗M = Λ2
+ ⊕Λ2

−,

where Λ2
± are the ±1-eigenspaces of ∗. The two eigenspaces are the bundles of self-

dual and anti-self-dual 2-forms respectively. With respect to this decomposition

of Λ2T ∗M , the Riemann curvature tensor R is

(
A B

B∗ C

)
and Singer & Thorpe

(1969) give the following decomposition into irreducible components

R 7−→ (TrA,B,A− 1
3 TrA,C − 1

3 TrC).

Here TrA = TrC = κ/4, where κ is the scalar curvature, B is the traceless Ricci

tensor and, putting W+ = A − 1
3 TrA, W− = C − 1

3 TrC, W = W+ +W− is the
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Weyl tensor. Now M is said to be Einstein if B ≡ 0 and it is said to be self-dual if

W ≡W+, that is if W− ≡ 0. As in (1.2.1), these two conditions imply that

R|G =
κ

12
idG ,

where G = Λ2
−.

Definition 1.2.3. A 4-dimensional, oriented, Riemannian manifold M is

quaternionic Kähler if M is Einstein and self-dual.

Further motivation for this definition comes from the following result of Marchi-

afava (1990). Call a submanifold N of a quaternion-Hermitian manifold M quater-

nionic, if for each x ∈ N , TxN is an H-submodule of TxM . Marchiafava shows that

a four-dimensional quaternionic submanifold of a quaternionic Kähler manifold is

self-dual and Einstein with respect to the induced metric.

Note that in both the 4- and 4n-dimensional cases, quaternionic Kähler mani-

folds are not necessarily Kähler. Even if a quaternionic Kähler manifold does possess

a Kähler structure, this need not be compatible with the quaternionic structure,

as in the case of Gr2(C
n). Because quaternionic Kähler manifolds are Einstein of

dimension strictly bigger than 2, their scalar curvature is necessarily constant (see

Kobayashi & Nomizu, 1963). If M is a quaternionic Kähler manifold with zero

scalar curvature, then the restriction of the Riemann tensor to G is zero and so G is

flat. If M is also simply connected then this implies that G is trivial and that M is

hyperKähler. Conversely, if M is hyperKähler then its scalar curvature vanishes

and its linear holonomy group is a subgroup of Sp(n) 6 Sp(n) Sp(1). In view of this

discussion, from now on we will usually take the expression ‘quaternionic Kähler’

to imply non-zero scalar curvature.
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The model example of a quaternionic Kähler manifold is quaternionic projective

space HP(n). The compact homogeneous quaternionic Kähler manifolds were stud-

ied by Wolf (1965). He obtains five exceptional spaces, which we list in Chapter 2,

and three infinite families: HP(n); the Grassmannian Gr2(C
n) of 2-planes in C

n and

the Grassmannian G̃r4(R
n) of oriented 4-planes in R

n. The non-compact duals of

these spaces are also quaternionic Kähler. Non-compact, non-symmetric examples

were obtained by Alekseevskĭı (1970, 1975) and quaternionic Kähler orbifolds have

been constructed by Galicki & Lawson (1988). If HP(n) is embedded in Gr2(C
2n+2)

by regarding C
2n+2 as Hn+1, then the normal bundle is T HP(n) and this inherits

an incomplete quaternionic Kähler metric from that of the Grassmannian.

Moving away from the Riemannian category, there are the following two notions

corresponding to hyperKähler and quaternionic Kähler. A hypercomplex manifold

is a manifold with complex structures I, J and K such that IJ = −JI = K. Even

though we have not fixed a compatible metric, there is a natural connection.

Theorem 1.2.4. (Obata, 1956) If X is a 4n-dimensional manifold with

a pair I, J of integrable, anti-commuting almost complex structures, then

there is a unique torsion-free connection ∇ such that

∇I ≡ 0 ≡ ∇J.

�

On a hyperKähler manifold this connection is just the Levi-Civita connection.

The following definition, which will appear naturally in Chapter 5, is due indepen-

dently to Bérard-Bergery (see Besse, 1987) and Salamon (1986): a quaternionic

manifold is a manifold M with a bundle G together and a compatible torsion-free

connection. This implies that locally there are sections of G which are integrable
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complex structures. Quaternionic Kähler manifolds are quaternionic, the relevant

connection being the Levi-Civita connection.



Chapter 2

BUNDLE CONSTRUCTIONS

The basic examples of hyperKähler and quaternionic Kähler manifolds are

H
n+1 and HP(n), with their flat and symmetric metrics respectively. The twistor

space of HP(n) is CP(2n+1). These spaces are clearly intimately related from the

algebraic viewpoint. In this chapter we begin our exploration of the links between

their natural metrics. We show how the hyperKähler metric of Hn+1 can be re-

covered either from HP(n) or from CP(2n + 1). Also, we see how HP(n) defines

the quaternionic Kähler metric on H
n+1 induced from the identification H

n+1 ∼=

HP(n + 1) \ HP(n) in such a way that the picture can be generalised. If M is

any quaternionic Kähler 4n-manifold with positive scalar curvature, then Sala-

mon (1982) showed that there is a Kähler manifold Z naturally associated to M .

We define a (4n+ 4)-manifold U(M) and obtain the following mappings.

H
n+1 \ 0y

ց

ւ
CP(2n+ 1)

HP(n)

U(M)y
ց

ւ
Z

M

We construct hyperKähler and quaternionic Kähler metrics on U(M). The twistor

space Z determines the quaternionic Kähler structure of M , so it is also possible to

construct the metrics on U(M) directly from Z. In the second part of this chapter we

show that hyperKähler metrics can be constructed on complex line bundles over a

larger class of complex-contact manifolds. We then describe U(M) for the compact

14
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homogeneous quaternionic Kähler manifolds and show that the construction for

projective spaces is as claimed above.

In Section 4 we forget the symplectic forms and look at the integrability of

the almost complex structures on U(M4), obtaining a hypercomplex structure pre-

cisely when M is self-dual. Integrability considerations over Kähler-Einstein man-

ifolds show that the metrics we construct over twistor spaces (and their general-

isations) are degenerate versions of the Ricci-flat, Kähler metrics constructed by

Calabi (1979) on the canonical bundle. Calabi’s construction produces metrics

with holonomy SU(n + 1) from Einstein metrics with holonomy U(n). Our con-

struction over a quaternionic Kähler base is analogous, creating holonomy Sp(n+1)

from holonomy Sp(n) Sp(1). The construction on complex line bundles cannot be

described quite so cleanly, but working in the category of Einstein manifolds, it

produces Sp(n+1)-holonomy from metrics with holonomy U(2n+1) and structure

group (1× Sp(n))U(1). Note that U(2n+ 1) is the smallest irreducible holonomy

group consistent with such a structure group.

All the metrics in this chapter will be constructed on associated bundles. To fix

our conventions we recall how these are defined. Let M be an oriented Riemannian

manifold. A frame u on M at a point x is an orientation-preserving linear isome-

try u : Rn → TxM . These maps form a principal SO(n)-bundle which we denote

by SO(M). If M has holonomy group G 6 SO(n) then the bundle SO(M) may

be reduced to a principal G-bundle F (see Kobayashi & Nomizu, 1963). To any

G-module W we associate a bundle W defined by

W = F ×GW =
F ×W
G

,

where g ∈ G acts on (f, w) ∈ F × W by (f, w) · g = (f · g, g−1 · w). This is a

vector bundle over M with fibre W . We usually write W forW and not distinguish

between the bundle and the representation.
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2.1 Metrics Over a Quaternionic Kähler Base

If M is a quaternionic Kähler manifold of dimension 4n, then its holonomy group

is a subgroup of Sp(n) Sp(1) and the reduced frame bundle F consists of frames

u : Hn → TxM which are compatible with the quaternionic structure. Locally,

F can be lifted to a principal Sp(n)×Sp(1)-bundle F̃ which double covers F and this

enables the construction of bundles associated to representations of Sp(n)× Sp(1).

These bundles exists globally if either F̃ exists globally or (−1,−1) ∈ Sp(n)×Sp(1)

acts as the identity.

The obstruction to the global existence of the double cover F̃ is a cohomol-

ogy class ε ∈ H2(M,Z2) defined by Marchiafava & Romani (1976). If M is 4n-

dimensional with n odd, then ε vanishes if and only if the second Stiefel-Witney

class w2 vanishes. The class w2 is the obstruction to lifting SO(M) to a principal

Spin(4n)-bundle. If w2 vanishes, M is said to be a spin manifold. Salamon (1982)

noted that quaternionic Kähler 8n-manifolds are automatically spin and proved that

the only complete quaternionic Kähler manifolds with positive scalar curvature for

which ε vanishes are the quaternionic projective spaces HP(n).

There are two basic modules we consider: E is Hn with

A · ξ = Aξ,

where A ∈ Sp(n) and ξ ∈ H
n; and H is H with

q · y = yq̄,

where q ∈ Sp(1) and y ∈ H. IfM is a 4-manifold then E = V+ and H = V− are just

the positive and negative spin bundles. From the realisation of Sp(n) Sp(1) as a

subgroup of SO(4n), we have that the complexified tangent bundle TCM is E⊗CH.
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The bundle F carries a canonical 1-form θ with values in H
n given by

θu(v) = u−1(π∗v),

where π : F → M is the projection map, u ∈ F and v ∈ TuF . The Levi-Civita

connection on M induces a connection ω ∈ Ω1(F, sp(n) ⊕ sp(1)) on F which is

torsion-free. The first structure equation then gives

dθ = −ω ∧̄ θ.

Here ω ∧̄ θ is the 2-form whose value on X,Y ∈ TxF is

(ω ∧̄ θ)(X,Y ) = 1
2 (ω(X) · θ(Y )− ω(Y ) · θ(X)),

where · denotes the action of sp(n)⊕sp(1) on H
n. Corresponding to this Lie algebra

splitting we write ω = ω+ + ω−.

Lemma 2.1.1. If ∧ denotes the usual exterior product on quaternion-

valued forms, then

dθ = −ω+ ∧̄ θ − ω− ∧̄ θ = −ω+ ∧ θ − θ ∧ ω−. (2.1.1)

Proof. The Lie algebra sp(n) consists of quaternion-valued n×n-matrices A such

that A + Āt = 0. If A ∈ sp(n), q ∈ sp(1) ∼= ImH and ξ ∈ H
n then differentiating

the Sp(n) Sp(1)-action on H
n gives

(A+ q) · ξ = Aξ + ξq̄ = Aξ − ξq.
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It is now clear that ω+ ∧̄ θ = ω+ ∧ θ. The algebra Ω(F,Hn) is Ω(F ) ⊗ H
n, so we

can write ω− =
∑
i

αi ⊗ qi and θ =
∑
j

βj ⊗ ξj with αi, βj ∈ Ω1(F ) and qi ∈ ImH,

ξj ∈ H
n, then

ω− ∧̄ θ =
∑

i,j

αi ∧ βj ⊗ qi · ξj = −
∑

i,j

αi ∧ βj ⊗ ξjqi

=
∑

i,j

βj ∧ αi ⊗ ξjqi = θ ∧ ω−,

as required. �

The uniqueness of the Levi-Civita connection implies that (2.1.1) determines

ω = ω+ + ω− as an element of Ω1(F, sp(n)⊕ sp(1)).

The metrics we construct will be defined on the bundle H which is the Sp(n)×

Sp(1)-quotient of F̃ ×H. The forms θ, ω± can be pulled back to F̃ ×H, where they

will also be denoted by θ and ω± respectively. There is a natural quaternion-valued

function x on F̃ ×H which is the pull-back of the identity map on H. We define a

quaternion-valued 1-form α on F̃ ×H by

α = dx− xω−.

Proposition 2.1.2. The forms xθ̄t∧θx̄ and α∧ ᾱ on F̃ ×H are pull-backs

of forms on the Sp(n)× Sp(1)-quotient H.

Proof. We use the following well-known Lemma.

Lemma 2.1.3. If a Lie group G acts smoothly on a manifold N in such a

way that the quotient N/G is a manifold, then the projection p : N → N/G

induces a natural isomorphism

Ω∗(N/G)
∼=−→ Ω∗

bas(N)
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between forms on N/G and basic forms on N , that is forms µ ∈ Ω∗(N)

such that

g∗µ = µ and Xyµ = 0,

for all g ∈ G and for all X ∈ TN such that p∗X = 0.

In our case G is Sp(n) × Sp(1) and the action on Ω∗(F̃ × H) will be denoted

by R∗
A,q. From the definitions of θ and x, we have

R∗
A,qθ = Ātθq, (2.1.2)

and

R∗
A,qx = xq.

If µ ∈ Ωp(X,H), ν ∈ Ωq(X,H) are two quaternion-valued forms on a space X, then

µ ∧ ν = (−1)pq ν̄ ∧ µ̄. (2.1.3)

Therefore,

R∗
A,q(xθ̄

t∧ θx̄) = xq
(
Ātθq

)t
∧ Ātθq(xq)

= xqq̄θ̄tA ∧ Ātθqq̄x̄

= xθ̄t∧ θx̄.

Consider the following commutative diagram in which all the maps are projec-

tions:

F̃ ×H
̟−→ H

p1

y
yπH

F̃
π−→ M
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IfX ∈ T (F̃×H) then θ(X) is zero if and only if π∗p1∗X = 0. But π∗p1∗X = πH∗ p∗X,

which is zero if p∗X = 0, so xθ̄t∧ θx̄ descends to H.

From equations (2.1.1) and (2.1.2)

R∗
A,qdθ = −

(
R∗
A,qω+

)
∧
(
Ātθq

)
−
(
Ātθq

)
∧
(
R∗
A,qω−

)
.

Since R∗
A,q commutes with d, we also have

R∗
A,qdθ = d

(
Ātθq

)
= −

(
Ātω+A

)
∧
(
Ātθq

)
−
(
Ātθq

)
∧ (q̄ω−q) .

From the uniqueness of ω, we obtain

R∗
A,qω+ = Ātω+A,

R∗
A,qω− = q̄ω−q.

Thus for α, we have

R∗
A,qα = αq, (2.1.4)

so α ∧ ᾱ is Sp(n)× Sp(1)-invariant.

If X ∈ T(u,y)(F̃ × H) is such that p∗X = 0, then X is tangent to the Sp(n) ×

Sp(1)-action and we may write X = (u · (P,Q), yQ) for some (P,Q) ∈ sp(n)⊕sp(1).

By definition, ω+(X) = P and ω−(X) = Q, so

α(X) = dx(X)− (xω−)(X) = (yQ)− y Q = 0,

as required. �
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The function r2 = xx̄ also descends to H, so we may consider the 2-form

υ = f(r2)α ∧ ᾱ+ g(r2)xθ̄t∧ θx̄,

where f and g are arbitrary real-valued functions. From (2.1.3), we see that υ takes

values in ImH and so defines three real 2-forms. In general, if µ = µ0+µ1i+µ2j+

µ3k ∈ Ω1(X,H) then

µ̄ ∧ µ = (µ0 ∧ µ1 − µ2 ∧ µ3)i+ (µ0 ∧ µ2 − µ3 ∧ µ1)j + (µ0 ∧ µ3 − µ1 ∧ µ2)k.

Thus, the components of υ are good candidates for symplectic forms on H.

Proposition 2.1.4. If f and r2g are nowhere zero and υ is the form

defined above, then the i, j and k components of υ are non-degenerate,

real 2-forms on H.

Proof. The projection π : F̃ → M has an Sp(n)× Sp(1)-invariant distribution of

horizontal subspaces given by kerω. This defines a distribution D on F̃ × H such

that for each (u, y) ∈ F̃ ×H

T(u,y)(F̃ ×H) = sp(n)⊕ sp(1)⊕Du,y ⊕H. (2.1.5)

Thus Du,y is isomorphic to kerωu 6 TuF̃ and is Sp(n)× Sp(1)-invariant. So D de-

scends to a distribution H of horizontals on H such that at a ∈ H

TaH ∼= Ha ⊕H ∼= Du,y ⊕H

whenever (u, y) ∈ p−1(a). Here H is the space of vertical vectors, that is vectors

tangent to the fibre of H →M over πH(a).

From the commutative diagram above, xθ̄t∧θx̄ vanishes on verticals. It is non-

degenerate on H since θ̄t∧ θ is non-degenerate on kerω. The form α = dx − xω−

vanishes on D, hence α ∧ ᾱ vanishes on H. It is sufficient to show that α ∧ ᾱ is

non-degenerate on the verticals H; but on H, α ∧ ᾱ is just dx ∧ dx̄, which is clearly

non-degenerate. �
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We can define a pseudo-Riemannian metric g1 on H by

g1 = Re(f(r2)α⊗ ᾱ+ g(r2)r2θ̄t⊗ θ).

Away from the zero section this metric is positive definite if f and g are both

strictly positive everywhere and the almost complex structures defined by g1 and υ

are independent of f and g. If we put

Υ = υ ∧ υ

= f2α ∧ ᾱ ∧ α ∧ ᾱ

+ fg(α ∧ ᾱ ∧ xθ̄t∧ θx̄+ xθ̄t∧ θx̄ ∧ α ∧ ᾱ)

+ g2r4θ̄t∧ θ ∧ θ̄t∧ θ,

then g1 is pseudo-hyperKähler if dυ = 0, and by Theorem 1.2.2, if dimM > 8,

g1 is pseudo-quaternionic Kähler if dΥ = 0. Let G1 be the subbundle of Λ2T ∗U(M)

generate by the i, j and k components of υ. If M is four-dimensional, we obtain

pseudo-quaternionic Kähler metrics if, in addition, the algebraic ideal generated

by G1 is a differential ideal. In order to compute these exterior derivatives we

introduce the curvature forms Ω± of ω±:

Ω+ = dω+ + ω+ ∧ ω+, Ω− = dω− + ω− ∧ ω−.

The base manifold M is Einstein, or in 4-dimensions Einstein and self-dual, if and

only if

Ω− = cθ̄t∧ θ, (2.1.6)

where c is a constant positive multiple of the scalar curvature κ. For example, in

4-dimensions, c is κ/48.
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Theorem 2.1.5. The 4-form Υ is closed if and only if

f =
q

c(pr2 + q)2
and g =

1

pr2 + q
,

for some p, q ∈ R and the algebraic ideal generated by G1 is a differential

ideal if and only if

f =
1

c(1 + γr2)
g,

for some real constant γ. Thus,

g1 =
q

c(pr2 + q)2
Re(α⊗ ᾱ) + r2

pr2 + q
Re(θ̄t⊗ θ)

is a pseudo-quaternionic Kähler metric on H \ 0 away from the (possibly

empty) submanifold pr2+q = 0 and we have a pseudo-hyperKähler metric

if p = 0.

Proof. We check the hyperKähler property first. From (2.1.6),

dα = −α ∧ ω− − xΩ− = −α ∧ ω− − cxθ̄t∧ θ,

so

d(α ∧ ᾱ) = −c(xθ̄t∧ θ ∧ ᾱ+ α ∧ θ̄t∧ θx̄).

Also, by (2.1.1),

d(θ̄t∧ θ) = −ω− ∧ θ̄t∧ θ + θ̄t∧ θ ∧ ω−,

so

d(xθ̄t∧ θx̄) = α ∧ θ̄t∧ θx̄+ xθ̄t∧ θ ∧ ᾱ.

This gives cp dυ = d(α ∧ ᾱ + cxθ̄t∧ θx̄) = 0 and that g1 is pseudo-hyperKähler in

this case.
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We now return to Υ. For greater generality, consider

Ξ = A(α∧ ᾱ∧ α∧ ᾱ) +B(α∧ ᾱ∧ xθ̄t∧ θx̄+ xθ̄t∧ θx̄∧ α∧ ᾱ) +Cr4(θ̄t∧ θ ∧ θ̄t∧ θ),

where A, B and C are real-valued functions of r2. In addition to the derivatives

calculated above, we have

d(θ̄t∧ θ ∧ θ̄t∧ θ) = d(πH
∗
Ω) = 0

and

dr2 = xdx̄+ dx x̄ = xᾱ+ αx̄.

Using this second equation to rearrange terms, we calculate that

dΞ =

(
−3c

r2
A+

3

r2
B +B′

)
dr2 ∧ (α ∧ ᾱ ∧ xθ̄t∧ θx̄+ xθ̄t∧ θx̄ ∧ α ∧ ᾱ)

+

(
−2c

r2
B +

2

r2
C + C ′

)
r4dr2 ∧ θ̄t∧ θ ∧ θ̄t∧ θ,

where ′ denotes differentiation with respect to r2. (Note that dr2 ∧α∧ ᾱ∧α∧ ᾱ is

zero since it is a 5-form that can only be non-zero on a 4-dimensional distribution.)

Thus dΞ vanishes if and only if

−3c

r2
A+

3

r2
B +B′ = 0

and

−2c

r2
B +

2

r2
C + C ′ = 0.

Putting A = f2, B = fg and C = g2 these equations imply that dΥ = 0 if and only

if

−3c

r2
f2 +

3

r2
fg + f ′g + fg′ = 0
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and

g
(
− c

r2
f +

g

r2
+ g′

)
= 0.

If g(r2) 6= 0 then the second equation gives

f(r2) =
1

c
(r2g′ + g).

Substituting in the first equation implies

g′′g = 2g′
2

and that

g(r2) = (pr2 + q)
−1
,

giving

f(r2) =
q

c
(pr2 + q)

−2
.

To find when the algebraic ideal generated by G1 is a differential ideal, we

calculate dυ:

dυ =

(
g

r2
− cf

r2

)
(xθ̄t∧ θx̄ ∧ xᾱ+ αx̄ ∧ xθ̄t∧ θx̄)

+ f ′dr2 ∧ α ∧ ᾱ+ g′dr2 ∧ xθ̄t∧ θx̄.

Because

dr2 ∧ α ∧ ᾱ = −αx̄ ∧ α ∧ ᾱ− α ∧ ᾱ ∧ xᾱ,

we see that the components of dυ lie in G1 ∧ T ∗U(M) ⊂ Λ3T ∗U(M) if and only if

f ′

f
=
g′

g
− 1

r2

(
1− cf

g

)
.

Solving this differential equation gives the desired result. �
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Instead of υ we can consider the 2-form

1

r2
(
a(r2)xᾱ ∧ αx̄+ b(r2)xθ̄t∧ θx̄

)
,

where a and b are arbitrary functions of r2. This corresponds formally to inverting

the fibre of H by mapping r2 to 1/r2. In exactly the same way as above we obtain

pseudo-quaternionic Kähler metrics.

Theorem 2.1.6. On H there are pseudo-quaternionic Kähler metrics

g2 =
p

c(pr2 + q)2
Re ᾱ⊗ α+

1

pr2 + q
Re θ̄t⊗ θ

whose 4-forms are given by

p2

c2(pr2 + q)4
(ᾱ ∧ α ∧ ᾱ ∧ α)

+
p

c(pr2 + q)3
(ᾱ ∧ α ∧ θ̄t∧ θ + θ̄t∧ θ ∧ ᾱ ∧ α)

+
1

(pr2 + q)2
(θ̄t∧ θ ∧ θ̄t∧ θ).

When q = 0 these metrics are pseudo-hyperKähler away from the zero-

section. �

Note that these quaternionic Kähler metrics are defined across the zero-section,

so the original g1 metrics can be extended at infinity by adjoining a copy of M , but

they will still degenerate on the zero-section. We shall see in Section 3 that if

the base manifold is HP(n), then the total space of H \ 0 is H
n+1∗ (Hn+1 with

the origin removed). The hyperKähler metric is just the usual flat metric, which

may be completed by adjoining a point, and the quaternionic Kähler metrics are
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induced by the inclusion H
n+1∗ ⊂ HP(n + 1). These quaternionic Kähler metrics

are completed by adjoining a copy of HP(n) at infinity to give HP(n+ 1).

So far we have only produced metrics on the bundle H which, as remarked

above, may only exist locally over M . Global statements may be obtained by

considering the bundle

U(M) = F ×Sp(n)Sp(1) (H∗/Z2).

Locally, this is just the quotient of H by Z2 = {±1}. The 2-form υ and the metrics

g1 and g2 are invariant by this action and so descend to U(M). The above theorems

thus hold on U(M). In particular, fixing attention on g1 and taking p, q > 0, we

have:

Theorem 2.1.7. If M is a quaternionic Kähler manifold with non-zero

scalar curvature, then the associated bundle U(M) is pseudo-hyperKähler.

Also U(M) admits a family of pseudo-quaternionic Kähler metrics which

have the pseudo-hyperKähler structure as a scalar curvature tends to zero

limit. All these metrics share the same underlying quaternionic structure

and they are positive definite if M has positive scalar curvature. �

That hyperKähler metrics may be obtained as the scalar curvature tends to

zero limit of families of quaternionic Kähler metrics is suggested by the result of

Alekseevskĭı (1968). He shows that the curvature tensor of a quaternionic Kähler

manifold decomposes as λRHP(n) +R0, where RHP(n) and R0 have the symmetries

of the curvature tensors of HP(n) and a hyperKähler manifold respectively. Gal-

icki (1986) showed, using results of Bagger & Witten (1983), that the Calabi metric

on T ∗
CP(n) could be obtained as a limit of the symmetric metric on the Wolf

space Gr2(C
n+2). The families of metrics we produced above have the additional

property that the topology does not change in the limit.
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Corollary 2.1.8. IfM is a self-dual, Einstein, spin 4-manifold with scalar

curvature κ and V− \ 0 is its negative spin bundle with the zero section

removed. Then V− \ 0 is hyperKähler if κ > 0 and V− \ 0 is pseudo-

hyperKähler if κ < 0. Also V− \0 admits pseudo-quaternionic Kähler met-

rics in the same quaternionic structure which are positive-definite if κ > 0.

�

The bundle V− is naturally associated to the conformal structure on M4. In

fact we may write the fibre of U(M) as

CO+(4)

SU(2)−
=

Sp(1)GL(1,H)

Sp(1)−
= H

∗/Z2 = RP(3)× R>0.

The last two descriptions of the fibre of U(M) apply in all dimensions. From the

definition, U(M) is a principal H∗/Z2-bundle, with action induced from the action

of q ∈ H
∗ on ξ ∈ H given by ξ · q = q̄ξ. The action permutes the complex struc-

tures U(M), thus showing that they are all equivalent. This is not true in general

where the cohomology class of I, say, may be different from those for the other struc-

tures, as in case of the moduli space for solutions of the self-duality equations over a

Riemann surface (Hitchin, 1987), or all three cohomology classes may differ, as for

the asymptotically locally Euclidean (ale) 4-manifolds (Kronheimer, 1989a). Note

that RP(3) = (Sp(n) Sp(1))/Sp(n) parameterises those Sp(n)-structures which are

compatible with a given quaternionic Kähler structure on R
4n. This is exactly

analogous to the way that SO(2n)/U(n) parameterises all almost complex struc-

tures compatible with a given metric and orientation on R
2n. Quaternionic Kähler

manifolds have a twistor operator D defined to be the composition

H
∇−→ H ⊗ T ∗M = H ⊗ EH = ES2H ⊕H −→ ES2H,
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where the last map is projection. From Salamon (1986) we see that a section s

of U(M) is a hyperKähler submanifold only if it is a solution of the twistor equa-

tion Ds = 0.

Since the constructions of metrics in this section only use properties of the

representations of the complexified group Sp(n,C) Sp(1,C), they may be generalised

to the case of a pseudo-quaternionic Kähler base manifold M . If the metric on M

has signature (4p, 4q) then the pseudo-hyperKähler metrics of the last theorem will

have signature (4p+ 4, 4q) if the scalar curvature of M is positive or (4p, 4q + 4) if

it is negative.

2.2 Metrics Over Kähler-Einstein Contact Manifolds

The twistor space Z of a quaternionic Kähler manifold is the CP(1)-bundle consist-

ing of almost complex structures compatible with the quaternionic Kähler structure

on M . It may be obtained from U(M) by fixing one of the complex structures and

then projectivising, so

Z = P(U(M)),

which is locally P(H). This induces a complex structure on Z and exhibits U(M)

as the total space of a holomorphic line bundle on Z with the zero section removed.

Salamon (1982) shows that Z is Kähler-Einstein manifold and that it has a complex

contact structure.

Definition 2.2.1. If N is a complex (2n + 1)-manifold, then a complex

contact structure on N is a line bundle L together with a holomorphic

1-form ϕ taking values in L, such that ϕ ∧ (dϕ)n is nowhere zero.

These structures on Z may be derived from the hyperKähler metric on U(M) as

follows. Fix one of the complex structures I on U(M), then there is a subgroup U(1)
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of Sp(1) which acts preserving I and permuting J and K. The moment map

associated to this U(1)-action is just the function r2, and so we obtain the twistor

space as the Kähler quotient of U(M). The norm of the vector field generated by

the circle action is constant on the level sets of the moment map and this can be

used to show that the twistor space is also Einstein (cf. Futaki, 1988). The complex

contact structure is given by the following result.

Proposition 2.2.2. Let N be a hyperKähler manifold, with complex

structures I, J , K. Suppose U(1) acts on N preserving I and permuting

J and K, then the Kähler quotient of N by U(1) is a Kähler contact

manifold.

Proof. This proof is essentially due to LeBrun (1983). Let X be the vector field

generated by the U(1)-action. Without loss of generality we may assume LXJ = K

and LXK = −J . Let P be the symplectic quotient ofN4n with respect to the Kähler

form ωI associated to I. Hitchin et al. (1987) show that this quotient manifold is

actually Kähler, so it only remains to show that it is a complex contact manifold.

If µ is the moment map associated to the Kähler quotient, then S := µ−1(x) is

a principal U(1)-bundle over P . Define a line bundle L over P by

L = S ×U(1) C,

where g ∈ U(1) acts by g · (s, z) = (g · s, gz). Let ωJ , ωK be the Kähler forms

associated to J and K respectively and define ω = ωJ + iωK . We define the contact

form ϕ on P to be ϕ = Xyω. If g ∈ U(1), then g∗ϕ = gϕ, so ϕ takes values in L

and if σ : P → S is a local section, then

σ∗(ϕ ∧ (dϕ)n−1) = σ∗((Xyω) ∧ (LXω)
n−1) = in−1σ∗(Xyωn),

which is does not vanish since X is vertical for the projection and (ω ∧ ω̄)n is a

non-zero multiple of the volume form of N . �
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Note that U(M) is dual to the contact bundle and this leads us to construct

hyperKähler metrics over other Kähler-Einstein contact manifolds. Twistor spaces

also have a real structure σ. This is an antiholomorphic involution and is naturally

defined by the Sp(1)-action on U(M). Suppose the U(1) preserving I is given by eiθ.

Let j be an element of Sp(1) such that on U(M), jeiθ = e−iθj. Then j descends

to the real structure σ on Z. Theorems indicating when a general Kähler-Einstein

contact manifold is a twistor space will be discussed in Chapter 4.

Let N be a complex (2n+1)-manifold with a complex contact structure {L, ϕ}.

We have an exact sequence

0 −→ D −→ T ′N
ϕ−→ L −→ 0,

where T ′N is the holomorphic tangent bundle of N and D is the distribution kerϕ.

Kobayashi (1959) shows that the structure group of N may be reduced to U(1) ×

(Sp(n) ⊗ U(1)), since T ′N ∼= D ⊕ L and dϕ behaves like a symplectic form on D.

The definition of the contact structure shows that (L∗)⊗n+1 is isomorphic to the

canonical bundle K of N . This implies that Ln = Λ2nD and we may restrict to

frames (l,D) : C ⊕ H
n → T ′N such that ln = detD. Thus the structure group

actually reduces to (1× Sp(n))⊗U(1).

Let F be the principal (1× Sp(n))⊗U(1)-bundle of frames u : C⊕H
n → TxN

compatible with the complex contact structure of N . The tangent bundle TN

is (C⊕E)⊗V as an (1×Sp(n))⊗U(1)-module, where E is the basic representation

of Sp(n), as before, and V is the U(1)-module C with w · v = w̄v, for w ∈ U(1)

and v ∈ C. The contact line bundle is now just the bundle associated to V and the

contact form is projection.

If N has a Kähler structure compatible with the complex contact structure,

then the holonomy group of N is a subgroup of U(2n+ 1). If θ ∈ Ω1(F,C⊕H
n) is
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the canonical 1-form, then the Levi-Civita connection descends to give a 1-form ω

in Ω1(F, u(2n+1)) such that dθ = −ω∧θ. Corresponding to the Lie algebra splitting

u(2n + 1) = u(1) ⊕ su(2n + 1), we write ω = ω+ + ω−. Locally, we can work on

a line bundle L−1/2 such that L−1/2 ⊗ L−1/2 ∼= L∗. This may be constructed by

choosing a double cover S1 of U(1) and taking the bundle associated to the standard

representation of S1 on W ∼= C. Let z be the pull-back of the identity map on W

and let r2 = zz̄. As before, define a 1-form α by

α = dz − zω+.

Lemma 2.2.3. If N is also an Einstein manifold, then there is an almost

Kähler structure on L−1/2 \ 0 with metric

g = Re(α⊗ ᾱ+ λr2θ̄t⊗ θ)

and 2-form

ν = α ∧ ᾱ+ λr2θ̄t∧ θ,

where λ is some positive constant multiple of the scalar curvature of N .

Proof. For A ∈ Sp(n) and ζ ∈ S1, we have R∗
A,ζθ = Ātθζ2 and R∗

A,ζz = ζz. Also,

ω+ is invariant under this group action. Exactly as for the bundle H, we see that

ν and g are well-defined on L−1/2.

It is now sufficient to show that ν is closed, as it is clearly non-degenerate away

from the zero section. From the definition of α,

dα = −dz ω+ − z dω+ = −αω+ − zΩ+,

where Ω+ = dω+ +ω+ ∧ω+. Since N is Kähler-Einstein, we have Ω+ = λθ̄t∧ θ and

that

d(α ∧ ᾱ) = −Ω+ ∧ dr2 = −λθ̄t∧ θ ∧ dr2 = −λd(r2θ̄t∧ θ).

Thus ν is closed. �
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The almost complex structure so defined on L−1/2 \ 0 is integrable, as will be

seen from Hitchin’s lemma, but a direct proof will also be presented when we discuss

the relation with the Calabi metric later in this chapter.

The canonical 1-form θ on F splits as θ = θ++θ− corresponding to the splitting

of Ω1(F,C ⊕ H
n). With respect to the complex structure defined by g and ν, we

have that z2θ̄+ is a well-defined holomorphic 1-form on L−1/2. This is essentially

the contact form on N and d(z2θ̄+) provides the rest of the hyperKähler structure

on L−1/2 \ 0 and also its Z/2-quotient L∗ \ 0.

Proposition 2.2.4. Let N be a (2n + 1)-dimensional Kähler-Einstein

manifold with a compatible complex contact structure and positive scalar

curvature. Then

g = Re(α⊗ ᾱ+ λr2θ̄t⊗ θ)

is a hyperKähler metric on L∗ \ 0, where L is the contact line bundle

over N .

Proof. It remains to show that d(z2θ̄+) and ν are compatible. We will assume that

the scalar curvature of N has been normalised so that λ = 1. The compatibility

requirement is that there is a H
n+1-valued 1-form µ + µ′j such that (µ + µ′j) ∧

(µ+ µ′j) = µ ∧ µ̄+ µ′ ∧ µ̄′ + 2µ′ ∧ µj is the 2-form ν + d(z2θ̄+)j.

Now

ν = α ∧ ᾱ+ r2θ̄+ ∧ θ+ + r2θ̄t−∧ θ−

and

d(z2θ̄+) = 2z dz ∧ θ̄+ + z2dθ̄+.

Since, θ+ is the contact form, our assumption of compatibility of the complex con-

tact and Kähler structures shows that dθ+ and −θ̄t−∧θ− are compatible on the distri-

bution D. Thus, z2dθ̄+ and r2θ̄t−∧θ− are compatible. Also, taking µ+µ′j = zθ̄++αj

we see that 2zα ∧ θ̄+ and α ∧ ᾱ+ r2θ̄+ ∧ θ+ are compatible. �
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If N is the twistor space of a quaternionic Kähler manifold M then this metric

agrees with one previously constructed on U(M) ∼= L∗ \ 0. This can be seen as

follows. If we apply the proposition to CP(1) with its standard structure, then a

computation analogous to the one below for HP(n) shows that we obtain the flat

metric on C
2∗. The metric constructed over N now consists of this flat metric in

the (θ+, α)-direction and a multiple of the metric onM in the remaining directions,

which is the way that the metric of U(M) decomposes with respect to the fibre and

horizontal directions.

If we just regard L∗ \ 0 as a complex symplectic manifold then it is the sym-

plectification of the complex contact manifold N in the sense of Arnol’d (1978).

The construction of hyperKähler metrics in the first section may then be regarded

as a quaternionic enhancement.

2.3 Examples

The model examples of quaternionic Kähler manifolds are HP(n). For these spaces

it is possible to compute the metrics on U(HP(n)) explicitly. This is largely because

the frame bundle F may be readily computed.

Lemma 2.3.1. The double cover of the reduced frame bundle of HP(n)

may be identified with Sp(n+ 1).

Proof. Recall that

HP(n) ∼= Sp(n+ 1)

Sp(n)× Sp(1)
,

so Sp(n + 1) is naturally a principal Sp(n) × Sp(1)-bundle over HP(n); we denote

the projection by π. Explicitly, let e be the vector (0, . . . , 0, 1)t ∈ H
n+1 and for

A ∈ Sp(n+ 1) put

π(A) = [Ae] = [a1n, . . . , ann],
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where A = (aij). Let (B, q) ∈ Sp(n) × Sp(1) act on A via right multiplication

by

(
B 0

0 q

)
. Then the tangent space of HP(n) at π(A) is

Tπ(a) HP(n) = ATeĀ
t,

where

Te = T[e] HP(n) =

{(
0 ξ

−ξ̄t 0

)
: ξ ∈ H

n

}
.

Now A defines an orientation preserving linear isometry H
n → Tπ(a) HP(n) by

ξ 7→ A · ξ = A

(
0 ξ

−ξ̄t 0

)
Āt.

This map from Sp(n+1) to the frame bundle of HP(n) has kernel {±1} and so the

lemma is proved. �

For HP(n), we have that the bundle H \ 0 equals

F̃ ×Sp(n)×Sp(1) H∗ =
Sp(n+ 1)

Sp(n)
×Sp(1) H∗ =

Sp(n+ 1)

Sp(n)
× R>0.

But Sp(n + 1)/Sp(n) is just the (4n + 3)-sphere S4n+3. So, topologically, H \ 0

is Hn+1∗.

Proposition 2.3.2. The hyperKähler metric on H \ 0 over HP(n) is the

flat metric on H
n+1∗.

Proof. If A ∈ Sp(n+ 1) then

TA Sp(n+ 1) ∼=
{
v = A

(
M ξ

−ξ̄t ν

)
Āt : ξ ∈ H

n, M ∈ sp(n), ν ∈ ImH

}
.
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Thus, if v ∈ TA Sp(n+1) then θA(v) = A−1 ·(π∗v) = ξ. For any v, v′ ∈ TA Sp(n+1)

we have dθA(v, v
′) = vθA(v

′) − v′θA(v) − θA[v, v′]. We may extend v, v′ to vector

fields in such a way as to make vθA(v
′)− v′θA(v) vanish. Then, in components,

dθA(v, v
′) = dθA

(
A ·
(
M ξ

−ξ̄t ν

)
, A ·

(
M ′ ξ′

−ξ̄′t ν′

))
= −(Mξ′ + ξν′ −M ′ξ− ξ′ν).

From (2.1.1), we see that

ω+A(v) =M, ω−A(v) = ν.

Let s : H \ 0→ Sp(n+1)×H
∗ be a local section such that the component of s

in H
∗ is real. If (v, z) is tangent to s at (A, y), then

α(v, z) = z − yν and (θx̄)(v, z) = ξy.

So the hyperKähler metric g on H \ 0 is

g̟(A,y)(̟∗(v, z), ̟∗(v, z)) = z2 + y2(|ν|2 + c|ξ|2),

where c is the constant such that Ω− = dω− + ω− ∧ ω− = cθ̄t∧ θ. But Ω−(v, v′) =

ξ̄tξ′ − ξ̄′tξ = (θ̄t∧ θ)(v, v′), so c = 1. The final bracket in the expression for g is

just the standard metric on S4n+3, since the inclusion sp(n+1) ⊂ so(4n+4) shows

that it agrees with the expression for the SO(4n+ 4)-invariant metric. �

Note that it was not sufficient in the above proof to check that we had an

Sp(n+1)-invariant metric, since S4n+3 admits several families of such metrics some

of which are even Einstein (see Besse, 1987).
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We may also consider other homogeneous base spaces. Wolf (1965) and Alek-

seevskĭı (1968) classified the compact homogeneous quaternionic Kähler manifolds,

obtaining precisely one for each compact simple Lie group:

HP(n) =
Sp(n+ 1)

Sp(n)× Sp(1)
, Gr2(C

n) =
SU(n)

S(U(n− 2)×U(2))
,

G̃r4(R
n) =

SO(n)

SO(n− 4)× SO(4)
,

G2

SO(4)
,

F4

Sp(3) Sp(1)
,

E6

SU(6) Sp(1)
,

E7

Spin(12) Sp(1)
and

E8

E7 Sp(1)
.

These are constructed as follows. Let G be a compact, centreless, simple Lie group

with Lie algebra g. For each root α define

gα = {X ∈ gC : [H,X] = α(H)X for all H ∈ h },

where h is a fixed Cartan subalgebra of gC. Choose a highest root ρ. Then the

subalgebra generated by gρ and g−ρ is isomorphic to sp(1,C). This has normaliser

lC ⊕ sp(1,C), where, if 〈·, ·〉 denotes he Killing form on gC, l is defined by

l = g ∩
(
{H ∈ h : ρ(H) = 0 } ⊕

∑

α>0
〈α,ρ〉=0

(gα ⊕ g−α)
)
.

The Wolf space associated to G is thenM = G/(L ·Sp(1)), where L and Sp(1) have

Lie algebras l and sp(1), respectively. Wolf also shows that the twistor space of M

is Z = G/(L · S1) ∼= GC/U , where the Lie algebra of U is

u = h⊕
∑

〈α,ρ〉>0

gα.
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The twistor space may also be described as follows. Let Eρ be a non-zero

element of gρ and consider the adjoint action of GC on the linear span [Eρ] of Eρ.

If H ∈ h then [H,Eρ] = ρ(H)Eρ and for X ∈ gα we have

[X,Eρ]

{ ∈ gα+ρ if α+ ρ is a root,

= 0 otherwise.

If 〈α, ρ〉 > 0, then α+ρ is not a root, since ρ is the highest root. Whereas, if 〈α, ρ〉 <

0, then α+ρ is a root. So the Lie algebra of the stabiliser of [Eρ] is h⊕
∑

〈α,ρ〉>0

gα = u

and the twistor space of M may be identified with the projectivised orbit of Eρ.

The orbit O of Eρ itself is B = GC/U1 where

u1 = {X ∈ u : 〈X,Hρ〉 = 0 },

(Here Hρ is the element of h defined by 〈Hρ, H〉 = ρ(H) for all H ∈ h.) The contact

line bundle on Z is L = B∗ and the contact form ϕ is given by (ϕ(π∗X))(b) =

〈Eρ, X〉, where π : B → Z is the projection, b ∈ π−1(1) and X ∈ 〈Hρ〉 ⊕
∑

〈α,ρ〉<0

gα

which is isomorphic to the tangent space of B. Thus the nilpotent orbit O is the

dual of the contact line bundle and hence is the associated bundle U(M).

Recall that the Wolf space M is the quotient of the real group G by the nor-

maliser N(Sp(1)) of Sp(1). Thus M is the G-orbit of real subalgebras sp(1) of g

such that the nilpotent elements of sp(1) ⊗ C lie in the highest root orbit O. The

fibre of U over a point of M consists of the nilpotent elements in sp(1) ⊗ C. Let

σ be the real structure on gC corresponding to g. This is a conjugate-linear Lie

endomorphism of gC with σ2 = 1 and whose +1-eigenspace is g. If X ∈ O then the

real sp(1) corresponding to X has complexification spanned by X, σX and [X,σX].

The H
∗-action on U(M) is essentially given by the following lemma.
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Lemma 2.3.3. If Y , H are such that 〈Y,−σY,H〉 is an sl(2,C)-triplet,

i.e.

[Y,−σY ] = H, [H,Y ] = 2Y and [H,−σY ] = −2(−σY ),

then there is an H
∗-action on the nilpotent elements of 〈Y, σY,H〉 given

by

(a+ bj) · Y = a2Y + b2σY + ab[Y, σY ], for a+ bj ∈ Sp(1),

λ · Y = λ2Y, for λ ∈ R.

Proof. We need to verify that this is an action. It sufficient to check we have

an Sp(1)-action. Let a+ bj and c+ dj be elements of Sp(1).

(c+ dj) · ((a+ bj) · Y ) = (c2a2 + d2b̄2)Y + (c2b2 + d2ā2)σY

+ (c2ab− d2āb̄)[Y, σY ] + cd(|a|4 − |b|4)[Y, σY ]

− cdab̄(|a|2 + |b|2)[[Y, σY ], Y ]

− cdāb(|a|2 + |b|2)[[Y, σY ], σY ]

= (ca− db̄)2Y + (cb+ dā)2σY + (ca− db̄)(cb+ dā)[Y, σY ]

= ((c+ dj)(a+ bj)) · Y

�

To get an H
∗-action on the orbit we need to show that there is a positive real

number λ such that Y = λX satisfies the hypotheses of the lemma. It is sufficient

to show that [X, [X,σX]] is a positive multiple of X. Now 〈X,σX, [X,σX]〉 is

isomorphic to sp(1,C) with its standard real structure, so we only need to work
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in sp(1,C) ∼= su(2,C). Write X as a 2 × 2 complex matrix, then σX = −X̄t.

Let {e1, e2} be an orthonormal basis for C
2. Since X is a highest root vector,

X = a ⊗ b̄ = aib̄jeiej , for some a, b ∈ C
2 such that

∑
aib̄j = 0. Now [X,σX] =

(‖a‖2bib̄j − ‖b‖2aiāj)eiej . So [X, [X,σX]] is 2‖a‖2‖b‖2X, as required.

From the last description of M , we can regard O as the set of Lie algebra

homomorphisms from sp(1) to g such that the nilpotent elements in sp(1)⊗C map

into O when the homomorphism is extended complex linearly. The H∗-action above

can then be viewed as the action of Aut(sp(1)) ∼= H
∗/Z2 via composition. Thus

the hyperKähler structures constructed by Kronheimer (1988) give the same metric

on the highest root orbit. His metrics on the rest of the nilpotent variety will be

studied in a later chapter.

Wolf also shows that any compact, homogeneous, complex contact manifold

arises as the twistor space of one of the quaternionic Kähler manifolds above.

So there are no compact homogeneous examples of our second construction which

are not already covered by the quaternionic Kähler case. An alternative descrip-

tion of these twistor spaces in terms of nilpotent Lie algebras has been given by

Burstall (1989).

2.4 Integrability

Recall that for an oriented, Riemannian four-manifold M , the bundle H is just the

negative spin bundle V−. Much of the discussion in the first section of this chapter

still applies; in particular, V−\0 carries a family of almost complex structures. When

the base manifold is Einstein and self-dual we automatically get the integrability of

these structures from the fact that all three symplectic forms are closed (Hitchin,

1987). However, if we are only concerned with when the structures are integrable

these conditions are stronger than necessary.
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Theorem 2.4.1. If M is an oriented, 4-dimensional, Riemannian, spin

manifold, then the almost complex structures I, J and K on V− \ 0 are

integrable if and only if M is self-dual.

Proof. Write V for V−\0. We first fix attention on one almost complex structure I.

Let T 1,0, T 0,1 denote the +i, −i eigenspaces of I on TV ⊗ C, respectively, and

write Λp,q for ΛpT 1,0∗⊗ΛqT 0,1∗. The Newlander-Nirenberg Theorem says that I is

integrable if and only if its torsion tensor N vanishes identically. It is well known

(see Kobayashi & Nomizu, 1963) that N is zero if and only if for each β ∈ Λ1,0,

(dβ)
0,2

= 0.

Fix a ∈ V and choose a section s : V → F̃ ×H in a neighbourhood of a. Write

s∗α = α0 + α1i+ α2j + α3k,

s∗(θx̄) = θ0 + θ1i+ θ2j + θ3k,

where α0, . . . , α3, θ0, . . . , θ3 ∈ Ω1(V,R). This gives an orthogonal basis {α0, . . . , α3,

θ0, . . . , θ3} for T ∗
aV with respect to which

ηI = −2(α0 ∧ α1 + α2 ∧ α3 − c(θ0 ∧ θ1 − θ2 ∧ θ3))

and

g =

3∑

i=0

(αi ⊗ αi + cθi ⊗ θi).

A typical element of Λ1,0 is β − iIβ, so α0 + iα1, α2 + iα3, θ0 − iθ1, θ2 + iθ3 is a

basis for Λ1,0
a V . Recall that

dα = −α ∧ ω− − xΩ−
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and

d(θx̄) = −ω+ ∧ θx̄− θ ∧ ω−x̄+ θ ∧ dx̄.

We may choose s such that s∗(TaV ) = Ds(a) ⊕ H, where D is the distribution

of horizontals given in (2.1.5). For such a choice (s∗dα)a = (−s∗(xΩ−))a and

(s∗d(θx̄))a = 0, since ω± and dx vanish on Ds(a) and ω− and θ vanish on H. Also,

we still have enough freedom left in the choice of s to arrange that x(s(a)) is real.

Thus, if we write s∗(Ω−) = Ω1i + Ω2j + Ω3k, then the remark at the start of this

proof gives that I is integrable if and only if

Ω0,2
1 = 0,

(Ω2 + iΩ3)
0,2 = 0.

(2.4.1)

Since I preserves the horizontal subspace Ha of TaV , a choice of a section

σ : M → V in neighbourhood of b = πH(a) ∈ M such that σ∗TbM = Ha, gives a

decomposition under I of

(Λ2T ∗
bM)C = Λ2,0 ⊕ Λ1,1 ⊕ Λ0,2.

We have σ∗αi = 0 and that σ∗θ0, . . . , σ∗θ3 is a basis for T ∗
bM . In Λ1,1 we obtain the

distinguished linear subspace 〈σ∗ηI〉 spanned by σ∗ηI . Write Λ1,1
0 for the orthogonal

complement of this subspace in Λ1,1. Now σ∗(θ0∧θ1∧θ2∧θ3) is a positive multiple

of the volume form on M at b, so a direct computation is all that is required to

verify the well-known correspondence

Λ1,1
0 = Λ2

+C
,

Λ0,2 ⊕ Λ2,0 ⊕ 〈σ∗ηI〉 = Λ2
−C
,

at b. Thus, as equations (2.4.1) only involve the (0,2)-components of Ω−, they only

place restrictions on Ω−
−, the component of Ω− lying in Λ2

−. (Here we are regarding
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Ω− as a 2-form on M , which is possible since Ω−(X,Y ) = 0 unless X and Y are

both horizontal.)

If we write θi for σ
∗θi, then

Ω−
− = a(θ0 ∧ θ1 − θ2 ∧ θ3) + b(θ0 ∧ θ2 − θ3 ∧ θ1) + c(θ0 ∧ θ3 − θ1 ∧ θ2) = (a, b, c),

for some a, b, c ∈ ImH. Write a = a1i + a2j + a3k, etc. Now, with respect to the

decomposition given by I, Λ0,2 is the span of (θ0∧θ2−θ3∧θ1)− i(θ0∧θ3−θ1∧θ2).

So (2.4.1) is equivalent to

b = −ic.

Similarly, integrability of J and K are equivalent to c = −ja and a = −kb, respec-

tively. So I, J , K are integrable if and only if

Ω−
− = −{(θ0 ∧ θ1 − θ2 ∧ θ3)i+ (θ0 ∧ θ2 − θ3 ∧ θ1)j + (θ0 ∧ θ3 − θ1 ∧ θ2)k}a,

for some real number a, which is precisely the condition that M be self-dual. �

Fixing a complex structure on V− \ 0 we can form the twistor space and obtain

the theorem of Atiyah et al. (1978a).

Theorem 2.4.2. (Atiyah, Hitchin & Singer) If M is an oriented, Rie-

mannian, 4-manifold then the natural almost complex structure on the

twistor space is integrable if and only if M is self-dual. �

When M is self-dual and spin, the complex structures I, J and K define a

hypercomplex structure on V− \ 0. Salamon (1986) shows that this is also true in

higher dimensions if we replace the self-duality condition by a requirement that M

be quaternionic and if we replace V− \ 0 by the appropriate rank 4 bundle. Even

though we have not defined a compatible metric, Obata’s theorem gives us a natural

connection and therefore geodesics.
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We now briefly return to the metrics constructed over Kähler-Einstein contact

manifolds earlier in this chapter. If we drop the assumption of possessing a complex

contact structure and allow N to be any Kähler-Einstein 2n-manifold we may per-

form the construction of Lemma 2.2.3 on the canonical bundle K of N and obtain

an almost Kähler metric. This metric is actually Kähler-Einstein, has zero scalar

curvature and is a degenerate case of a family of metrics described by Calabi (1979).

Proposition 2.4.3. Away from the zero-section, the canonical bundle of

a Kähler-Einstein manifold with positive scalar curvature admits a Kähler-

Einstein metric which is Ricci flat.

Proof. Put V to be the U(n)-representation ΛnCn, where C
n is the standard

U(n)-module. Then for A ∈ U(n), R∗
Aθ = Ātθ and R∗

Adz = (detA)−1dz. As in

Lemma 2.2.3, we have

g = Re(α⊗ ᾱ+ λr2θ̄t⊗ θ)

and a closed, non-degenerate 2-form

ν = α ∧ ᾱ+ λr2θ̄t∧ θ,

where λ is some positive constant multiple of the scalar curvature of N . We need

to check that the almost complex structure is integrable and that the Ricci tensor

is zero.

The integrability computation is exactly as above in the case of H, and shows

that the almost complex structure is integrable if and only if Ω0,2
+ vanishes. However,

N is Einstein and Ω+ = λθ̄t∧ θ which is of type (1, 1).

The Ricci tensor ρ of K is given by ρ = −id′d′′ log det gαβ̄ , where gαβ̄ =

g(vα, vβ̄) for some local holomorphic basis {vα}. But choosing a local section s, we

have s∗α = α0 + iα1 and s∗(θz̄) = θ0 + iθ1, giving a local basis α0 + iα1, θ0− iθ1 of

holomorphic 1-forms for which log det gαβ̄ is constant. �



Chapter 3

QUOTIENT CONSTRUCTIONS

SupposeM is a symplectic manifold of dimension 2n and a compact Lie groupG

of rank k acts smoothly, isometrically and freely onM . ThenM/G is a manifold, but

it has dimension 2n− k and so, in general, it cannot be symplectic. If the G-action

preserves the symplectic structure then Marsden & Weinstein (1974) showed that

under certain mild restrictions on M or G, there is a moment map µ : M → g∗ such

that µ−1(0)/G is a symplectic manifold of dimension 2n − 2k. This construction

has been generalised to hyperKähler manifolds by Hitchin et al. (1987) and to

quaternionic Kähler manifolds by Galicki & Lawson (1988). In this chapter we

discuss these constructions, give some examples and show that these reductions

are compatible with the hyperKähler metric construction of the previous chapter.

In particular, if MG is the quaternionic Kähler quotient of a quaternionic Kähler

manifold M by G, ZG is its twistor space and  denotes an appropriate quotient

by G, we have the following diagram.

U(M)  U(MG)
↓ ↓
Z  ZG
↓ ↓
M  MG

In Chapter 2 we constructed various hyperKähler metrics from different types

of base space. In this chapter we show how the structure of the quaternionic Kähler

45
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base spaces may be recovered from the hyperKähler structures. The construction is

a moment map construction based on the observation that the total spaces admit a

special type of Sp(1)-action. Finally we return to the Sp(1)-actions and show that

these hyperKähler metrics are determined by special Kähler potentials.

3.1 HyperKähler Quotients

LetM be a 4n-dimensional hyperKähler manifold, with Riemannian metric g, com-

plex structures I, J and K, and symplectic form η = ηI i + ηJj + ηKk. If X is a

vector field on M , let LX denote the Lie derivative with respect to X. We say that

X is Killing if LXg = 0, triholomorphic if LXI = LXJ = LXK = 0, or Hamiltonian

if LXη = 0. Note that any two of these conditions imply the third one.

Now suppose that G is a compact Lie group acting freely and smoothly on M

preserving g and η. For any vector field X generated by this action we have LXg =

0 = LXη. Now η is closed, so

0 = LXη = Xydη + d(Xyη) = d(Xyη).

If the first cohomology group H1(M,R) vanishes then there is a function µX ∈

Ω0(M, ImH) such that

Xyη = dµX .

These functions can be combined into a single map µ : M → g∗ ⊗ ImH defined by

〈µ(m), X〉 = µX(m), (3.1.1)

for m ∈ M . Note that µX is only defined upto an additive constant, but if G is

compact, then (Guillemin & Sternberg, 1984) there is no obstruction to choosing
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these constants so that µ is equivariant with respect to the actions of G on M

and g∗. In this case, µ (or µX) is called a moment map for the action of G on M .

Given a moment map µ, suppose a ∈ g∗⊗ImH is invariant under the (coadjoint)

action of G. Then, if we set Ma = µ−1(a), Ma is a G-invariant submanifold of M

of dimension 4n−3k, where k is the rank of G. Now G acts freely and isometrically

on Ma, so M̂a = Ma/G is a Riemannian manifold of dimension 4n − 4k. Since

G also preserves η, it can be shown that η and the almost complex structures on M

define a hyperKähler structure on M̂a. Details of these assertions may be found in

Hitchin, Karlhede, Lindström & Roček (1987).

This construction may be generalised to pseudo-hyperKähler manifolds. We

require that if we consider the distribution A of vectors tangent to the action of G

on M , then the restriction of the pseudo-metric g to A is non-degenerate. This

ensures that g gives a G-invariant distribution of horizontals in TMa for Ma →

Ma/G (see Lang, 1984). With this additional hypothesis, the proofs cited above

show that Ma/G is pseudo-hyperKähler. Hitchin (1988) has also studied the case

where we have no metric, just a hypersymplectic structure, and obtains a further

generalisation of the quotient construction.

The first example of a hyperKähler quotient is that of U(1) acting on flat

space H
n via

eiθ · (a+ jb) = eiθa+ je−iθb.

The value of the moment map for this action at q ∈ H
n is q̄tiq and we obtain a

hyperKähler quotient for each a ∈ ImH. If a is non-zero, there is an α ∈ H such that

ᾱiα = a and the U(1)-equivariant map q 7→ qα−1 takes the level set associated to a

to that associated to i. Thus the hyperKähler quotient associated to a is homothetic
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that associated to i. Writing q = a+jb, the moment map equation q̄tiq = i becomes

|a|2 − |b|2 = 1,

bta = 0.

The hyperKähler quotient is topologically T ∗
CP(n − 1), since a defines a point

of CP(n − 1) and b ⊗ ā defines an element of T ∗
[a] CP(n − 1) ∼= (Hom(〈a〉, 〈a〉⊥))∗.

Hitchin (1986) shows that the metric obtained on T ∗
CP(n− 1) coincides with the

one constructed by Calabi (1979, 1980).

The 0-level set of the moment map is

|a|2 = |b|2 and bta = 0.

The map (a, b) 7→ a⊗ b̄ is well-defined on the quotient space. The image inMn(C) ∼=

u(n,C) is the highest root orbit, together with 0, and the action of Sp(1) on H
n

on the right descends to the action described in Chapter 2. So the hyperKähler

quotient is the associated bundle U(Gr2(C
n)) with its hyperKähler metric and we

may view this metric as a singular limit of the Calabi metric on T ∗
CP(n−1). Note

that Galicki (1986) obtains this Calabi metric as a limit of the quaternionic Kähler

metrics on Gr2(C
n+1).

The twistor space of Gr2(C
n) is the flag manifold

F1,2,n =
U(n)

U(n− 2)×U(1)×U(1)
.

This clearly fibres over CP(n−1), and, away from the zero sections, T ∗
CP(n−1) may

be regarded as O(−2). Letting =⇒ denote a degenerate limit of a family of metrics,

and using the subscripts qK and hK to indicate whether the space in question is
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to be regarded as a quaternionic Kähler or hyperKähler manifold respectively, we

have the following diagram (away from zero sections).

U(Gr2(C
n))qK =⇒ U(Gr2(C

n))hK ⇐= T ∗
CP(n− 1) ⇐= Gr2(C

n+1)

ց ւ
F1,2,n

ւ ց
Gr2(C

n) CP(n− 1)

More generally, we can consider the bundle U(M) associated to a quaternionic

Kähler manifold M with non-zero scalar curvature.

Lemma 3.1.1. If X is a Killing vector field on M such that LXΩ = 0,

where Ω is the fundamental 4-form of M , then X may be lifted to a

Hamiltonian Killing vector field X̃ on U(M).

Proof. Let φ be an isometry of M such that φ∗Ω = Ω. Then φ∗ defines a map

φ∗ : Fx → Fφ(x) which commutes with the Sp(n) Sp(1)-action on the reduced frame

bundle F , since

(φ∗u(ξ)) · (A, q) = φ∗u(Aξq̄) = φ∗(u(ξ) · (A, q)),

for u ∈ F , ξ ∈ H and (A, q) ∈ Sp(n) × Sp(1). Similarly, the pull-back of φ∗

to F × (H∗/Z2) commutes with the Sp(n) Sp(1)-action, so we have an induced map

φ∗ : U(M)→ U(M).

Now φ∗ preserves θ, for if u ∈ F , v ∈ TuF then

φ∗θu(v) = θφ∗u(φ∗∗v) = (φ∗u)
−1

(π∗φ∗∗v)

and we have that πφ∗ = φπ, so φ∗θu(v) = u−1φ∗
−1(φ∗π∗v) = θu(v). Also,

φ∗ commutes with d and the connection forms ω± are uniquely determined by
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dθ = −ω+ ∧ θ − θ ∧ ω−, so φ∗ω− = ω−. The induced map φ∗ acts trivially on H,

and so preserves x and dx. Thus φ∗ is an isometry on U(M) which preserves the

2-form υ.

Let φt ba a local 1-parameter group of local isometries generating X. Since

LXΩ = 0, we may assume that φ∗tΩ = Ω. As above, we can lift φt to a local

1-parameter group φt∗ of local isometries on U(M). The vector field X̃ generated

by φt∗ is thus a Hamiltonian Killing field on U(M). Note that πH∗ X̃ = X. �

Suppose a compact Lie group G acts on M freely and isometrically and that

this action preserves Ω. The lemma above then tells us that the action of G may be

lifted to U(M) and that this action is isometric and triholomorphic. Since πH∗ X̃ = X

for each vector field generated by the action, the induced action preserves the fibres

of πH : U(M)→M , and is thus free.

Let Y be a Killing field generated by the action of G onM and let X denote the

lift of Y to U(M). The proof of the lemma yields an Sp(n) Sp(1)-invariant vector

field, which we again denote by X, on F and ̟∗X = X. If we define µX on F ×H
∗

by

µX = −Xy(xω−x̄), (3.1.2)

then µX is Sp(n)× Sp(1)× Z2-invariant and so is well-defined on U(M).

Proposition 3.1.2. Let µ : U(M)→ g∗⊗ImH be defined from (3.1.2) as

in (3.1.1). Then µ is a moment map for the induced action of G on U(M).

Proof. First we check that dµX = Xyυ. Now, since M is Einstein we have

dµX = −(LX −Xyd)(xω−x̄)

= −LX(xω−x̄) +Xy(dx ∧ ω−x̄+ xcθ̄t ∧ θx̄− xω− ∧ ω−x̄− xω− ∧ dx̄).
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But Xydx = 0 and LXx = 0, so

dµX = −x(LXω−)x̄+Xy(α ∧ ᾱ+ cxθ̄t ∧ θx̄).

Let φt be a 1-parameter group of isometries preserving Ω and generating Y . Then

φt∗ generates X and it preserves ω−, so LXω− = 0. Hence, dµX = Xyυ. The

equivariance of µ follows directly from the definition of µX . �

Define αY to be Y yg, where g is the metric on M . Then ∇αY is an element

of Λ2T ∗M , since Y is a Killing field (see Kobayashi & Nomizu, 1963). We have

a subbundle sp(1) of Λ2T ∗M whose fibre is the Lie algebra sp(1) ∼= ImH; this

bundle is just the isometric embedding of G in Λ2T ∗M . Let (∇αY )sp (1) denote

the orthogonal projection of ∇αY onto sp(1). If we choose a frame u ∈ F , then

(∇αY )sp (1)
π(u) = ω−(X)u, whereX is the lift of Y to TF , as above. Thus, µX vanishes

at a point a ∈ U(M) if and only if (∇αY )sp (1)

πH(a)
= 0. So, if µX vanishes at a, then

µX vanishes on the whole fibre through a and if X is a lifted Killing vector field,

then X is horizontal over each point of the fibre through a.

3.2 Quaternionic Kähler Quotients

SupposeM is a quaternionic Kähler manifold with fundamental 4-form Ω. A Killing

vector field X on M is said to be quaternionic if LXΩ = 0. Let X be such a Killing

field, I, J and K a local basis for G and ηI , ηJ and ηK their corresponding 2-forms.

Then locally we can define a 1-form ΘX with values in G by

ΘX = (XyηI)⊗ ηI + (XyηJ)⊗ ηJ + (XyηK)⊗ ηK .
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This definition does not depend on the choice of local basis for G and so ΘX is

globally defined. If αX = Xyg, as above, then the map Ω1(M) → Ω1(G) given by

αX 7→ ΘX is injective so we may regard ΘX as an element of Ω1(M).

The Riemannian connection ∇ on M preserves G, so we can define a sequence

Ω0(G) d∇−→ Ω1(G) d∇−→ Ω2(G) d∇−→ · · · ,

where d∇(α ⊗ σ) = dα ⊗ σ + (−1)pα ⊗ ∇σ for α ∈ Ωp(M) and σ ∈ Ω0(G). It is

well-known that if R is the curvature of G then

d∇◦ d∇f = R(f),

for each f ∈ Ω0(G). This is used to show the following:

Theorem 3.2.1. (Galicki & Lawson, 1988) if M has non-zero scalar cur-

vature, then for each quaternionic Killing vector field X on M there is a

unique fX ∈ Ω0(G) such that ∇fX = ΘX . �

Remark. If we regard fX as a 2-form, then the condition ∇fX = ΘX is equivalent

to dfX = XyΩ. The map X 7→ XyΩ is just the inclusion of Λ1T ∗M in Λ3T ∗M

which can be seen in the representation theory of Chapter 5.

We assume from now on that M has non-zero scalar curvature.

The map fX is actually determined by the function µX̃ introduced in (3.1.2).

In the notation of the previous section, let

fX =
1

λ
(∇αY )sp (1),

where λ is the same constant positive multiple of the scalar curvature of M as in

the introduction.
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Lemma 3.2.2. The function fX defined above satisfies ∇fX = ΘX .

Proof. Fix m ∈M and let η1, η2, η3 be a local basis of G regarded as a subbundle

of Λ2T ∗M , such that

∇ηi|m = 0, for i = 1, 2, 3.

Let a : V ⊗p → ΛpV be the alternation map, then dηi|m = a(∇ηi|m) = 0; so at m,

LXηi = d(Xyηi) +Xydηi = a(∇(Xyηi)) = a(∇c(αX , ηi)).

Here c : Λp⊗Λq → Λp−1⊗Λq−1 is contraction with the metric over each of the first

two indices. Now c commutes with ∇, so

LXηi = a(c(αX ,∇ηi) + c(∇αX , ηi)) = a(c(∇αX , ηi)),

by our choice of η. Now, M is irreducible, so ∇αX ⊗ ηi is an element of (sp(n) ⊕

sp(1))⊗sp(1) ∼= (sp(n)⊗sp(1))⊕S2(S2
C

2)⊕sp(1). But sp(n)⊗sp(1) is an irreducible

Sp(n)× Sp(1)-module and ac(sp(n)⊗ sp(1)) is a proper submodule, so by Schur’s

Lemma it is {0}. Thus ac(∇αX , ηi) is an element of sp(1) and only involves the

sp(1)-component of ∇αX . Hence

LXηi = [(∇αX)sp (1), ηi],

and the function fX agrees with the explicit form given in Galicki & Lawson (1988,

equation (2.11)), that is,

fX |m =
3∑

i=1

fi ⊗ ηi|m =
1

λ

∑

i

ri ⊗ ηi|m,

where LXηj =
∑
i,k

εijkriηk. �
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Thus fX is just the projection of µX̃ to M .

Let G be a compact Lie group acting freely and smoothly on M . Suppose that

this action preserves the metric and the 4-form Ω.

Definition 3.2.3. (Galicki, 1987) The moment map Φ: M → g∗ ⊗ G

associated to the G-action on M is defined by 〈Φ(m), X〉 = fX(m), for

each m ∈M and each vector field X generated by the action of G.

From the theorem above we have that Φ is G-equivariant. Unlike the hy-

perKähler case, there is only one natural G-invariant submanifold to consider,

namely M0 = Φ−1(0), where 0 denotes the zero section. If we now define MG =

M0/G, then Galicki & Lawson (1988) have shown that MG inherits a quaternionic

Kähler structure from M .

Examples of quaternionic Kähler quotients of HP(n) may be found in Gal-

icki (1987). In particular, the action of U(1) on H
n+1 given in the previous sec-

tion descends to HP(n). The moment map at [q0, . . . , qn] ∈ HP(n) is q̄tiq. Write

q = a + jb, then there is an A ∈ U(n + 1) such that Aa = (1, 0, . . . , 0)t. Now,

if q is a zero of the moment map, then so is Aq = Aa + jĀb and in particular,

btĀtAa = bta = 0, so Āb = (0, b1, . . . , bn)
t and we still have the freedom to choose A

so that Āb = (0, 1, 0, . . . , 0)t. Thus, U(n+1) acts transitively on the zero set of the

moment map. The stabiliser of a point is SU(2) × U(n − 1), so the quaternionic

Kähler quotient is

U(n+ 1)

SU(2)×U(n− 1)×U(1)
= Gr2(C

n+1).

Recall that the corresponding hyperKähler quotient of Hn+1 constructed the man-

ifold U(Gr2(C
n+1)) which is the associated bundle of the quaternionic Kähler quo-

tient. In the following section we show that this is true for all quaternionic Kähler

quotients.
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3.3 Commutativity of Constructions

In this section, when we perform the hyperKähler quotient of U(M) we use the zero

level set of the moment map.

Theorem 3.3.1. SupposeM is a quaternionic Kähler manifold with non-

zero scalar curvature. If a Lie group G acts isometrically, freely and quater-

nionically onM then G induces a free, triholomorphic, isometric action on

the associated bundle U(M). The pseudo-hyperKähler quotient of U(M)

by this G-action is precisely the associated bundle to the quaternionic

Kähler quotient of M by G.

Proof. Let M0, MG be as above and let π : M0 → MG and i : M0 → M be the

projection and inclusion maps, respectively. Let F be the reduced frame bundle

of M : this is a principal Sp(n) Sp(1)-bundle, where dimM = 4n. If X1, . . . , Xk is

a basis of quaternionic Killing vector fields for the action of G on M , and I, J , K

is a basis for G in a neighbourhood U of a point m ∈ M , then { IXi, JXi,KXi :

i = 1, . . . , k } span the orthogonal complement (TM0)
⊥|U of TM0 in TM |M0 (see

Galicki & Lawson, 1988). Also, X1, . . . , Xk span the vertical tangent space for the

projection π and its orthogonal complement in TM0 is horizontal for the Riemannian

submersion π : M0 →MG. Define E to be the subbundle of TM |M0 whose fibre atm

is the span of {Xi, IXi, JXi,KXi : i = 1, . . . , k } and consider the subbundle P

of i∗F of frames which restrict to frames on E. This is a principal bundle over M0

with fibre

(Sp(n− k)× Sp(k)) Sp(1) = (Sp(n− k)× Sp(k))×Z2 Sp(1).

We have a natural projection ρ : P → FG to the reduced frame bundle of MG

obtained by restricting frames to the horizontal directions. Note that ρ is just the

quotient map obtained from the free group action of G× Sp(k) on P .
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Let Û(M) denote the pseudo-hyperKähler quotient of U(M) by the induced G-

action, so Û(M) = µ−1(0)/G = U(M)0/G. This quotient may be performed, since

on µ−1(0) each vector field induced by the G-action is horizontal, so the restriction

of the metric to these vector fields is non-degenerate. The discussion in earlier

sections of this chapter shows that U(M)0 = i∗ U(M).

We first show that U(MG) = Û(M) topologically. We have that

π∗ U(MG) = π∗FG ×Sp(n−k)Sp(1) (H∗/Z2)

= (P ×Sp(n−k)Sp(1) (H∗/Z2))
/
Sp(k)

= P ×(Sp(n−k)×Sp(k))Sp(1) (H
∗/Z2),

where Sp(k) acts trivially on H
∗. Let φ be the composition

P × (H∗/Z2) −→ i∗F × (H∗/Z2) −→ U(M)0,

where the first map is inclusion and the second is the quotient by Sp(n) Sp(1).

It is sufficient to show that φ is the quotient map obtained from the action of

(Sp(n− k)× Sp(k)) Sp(1) on P × (H∗/Z2), but this is easily checked directly. Thus

U(MG) = Û(M) topologically.

Now it is sufficient to prove that U(MG) and Û(M) are locally isometric. If

U is a sufficiently small open subset of M0, then we may choose a double cover

i∗F̃ |U of i∗F |U and this gives a double cover P̃ of P . Now G × Sp(k) acts freely

on P̃ , so we may take the quotient and obtain a double cover F̃G|π(U) of FG|π(U).

Let σ : U → P̃ be a section and identify π∗TMG|U with the horizontal space. We

may define a map τσ : π
∗F̃G|U → F̃ |U by

τσ(u)m =

(
u0

υ0

)
·
((

A 0

0 1

)
, q

)
.
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Here σm =

(
u0

υ0

)
with u0 in the double cover of a frame on π∗TMG|m and u =

u0 · (A, q), A ∈ Sp(n− k), q ∈ Sp(1) and 1 denotes the identity matrix in Sp(k). If

we extend τσ by the identity to H
∗ then, as τσ commutes with the Sp(n−k)×Sp(1)-

action, we get an induced map τσ : π
∗H∗(MG)→ H∗(M0) over U . It may easily be

checked that this map is injective. Let ˆ over a form denote the version on H∗(MG)

or F̃G, e.g. θ̂ is the canonical 1-form of F̃G. From the following commutative diagram

F̃G
π∗←− π∗F̃G

τσ−→ i∗F̃
i∗−→ F̃

πG

y
yπ0

yπ1
y

MG ←−
π

M0 M0 −→
i
M

we have

π∗θ̂v(w) = θ̂π∗v(π∗∗w) = (π∗v)
−1(πG∗π∗∗w) = (π∗v)

−1(π∗π0∗w)

for v ∈ π∗F̃G|U , w ∈ Tv(π∗FG). Also, in the notation of the definition of τσ,

τσ
∗i∗θv(w) = θτσv(τσ∗w) =

((
u0

υ0

)
·
((

A 0

0 1

)
, q

))−1

(π1∗τσ∗w)

= (u0 · (A, q))−1(π0∗w) = v−1(π0∗w).

But π∗ is an isomorphism on each fibre, so π∗θ̂v(w) = τσ
∗i∗θv(w). Hence, τσ∗i∗η =

π∗η̂ and τσ is a local isometry. �

Taking M to be flat space gives the following: if G acts isometrically and

triholomorphically on H
n+1, then the hyperKähler quotient µ−1(x)/G projects to

a quaternionic Kähler quotient of HP(n), provided x = 0.
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3.4 Examples

In the first two sections of this chapter we have already seen how the hyperKähler

metric on U(Gr2(C
n)) arises as the hyperKähler quotient of flat space H

n by U(1).

Galicki (1987) also shows that the space G̃r4(R
4n) may be obtained as a quaternionic

Kähler quotient of HP(n − 1) by Sp(1) and so we obtain U(G̃r4(R
4n)) as the hy-

perKähler quotient ofHn by the diagonal action of Sp(1). In the case of U(Gr2(C
n)),

we obtained hyperKähler deformations of the metric. This procedure does not work

for U(G̃r4(R
4n)) because the centre of sp(1) is trivial.

HyperKähler quotients of flat space have been used by Kronheimer (1989a),

extending work of Gibbons & Hawking (1978) and Hitchin (1979), to construct and

classify hyperKähler ale 4-manifolds. Here ale stands for ‘asymptotically locally

Euclidean.’ These manifolds have one end and at infinity it resembles R
4/Γ, for

some finite subgroup Γ of SU(2). Briefly, the construction is as follows. Let V be

the regular representation of Γ and define M to be ((EndV ) ⊗C H)Γ, the space of

Γ-invariant elements in (EndV )⊗C H, where Γ acts on H in the standard way. Let

G be the group of unitary transformations of V which commute with the action

of Γ. Then the ale manifolds are obtained as the hyperKähler quotient ofM by G.

Note that G is in general a product of unitary groups with non-trivial centre Z, so

we obtain a space Xζ for each ζ ∈ ImH⊗ Z∗. The three real components of ζ then

correspond to the cohomology classes of the symplectic forms on Xζ . Note that

when ζ = 0 we obtain the singular space C
2/Γ with its flat metric.

As a contrasting example of quotients of flat space with an irreducible group ac-

tion, consider the nth-symmetric power Sn = SnV of the basic SU(2)-module V ∼=

C
2, where SU(2) acts by left multiplication. If {x, y} is an orthonormal basis for V ,
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then {xn, n1/2xn−1y,
(
n
2

)1/2
xn−2y2, . . . , yn} is an orthonormal basis for Sn, where

xn−1y =
1

n
(x⊗ · · · ⊗ x⊗ y + x⊗ · · · ⊗ x⊗ y ⊗ x+ · · ·+ y ⊗ x⊗ · · · ⊗ x),

etc.

A structure map on a CG-module A is a conjugate-linear automorphism j of A

such that j commutes with the G-action and either j2 = 1 or j2 = −1. In the first

case j is a real structure map and A is the complexification an RG-module. In the

second case j is a quaternionic structure map and A is isomorphic to an HG-module.

The basic SU(2)-module V has a quaternionic structure map j given by

j(ax+ by) = −b̄x+ āy.

This gives a structure map j on Sn which is real if n is even and quaternionic if n is

odd.

We restrict our attention to the quaternionic modules S2m+1 ∼= H
m. There is

a natural SU(2)-invariant homomorphism Ω: S2m+1 ⊗ S2m+1 → S0 ∼= C which is

the restriction of the linear map Ω: V 2m+1⊗ V 2m+1 → S0 given on decomposables

by

Ω(u⊗ v ⊗ . . . , u′ ⊗ v′ ⊗ . . . ) = (u ∧ u′)⊗ (v ∧ v′)⊗ . . . .

If we set

ηI(X,Y ) =
i

2
(Ω(X, jY )− Ω(Y, jX)),

ηJ(X,Y ) = ReΩ(X,Y ),

ηK(X,Y ) = ImΩ(X,Y ),

for X,Y ∈ TS2m+1 ∼= S2m+1, then ηI , ηJ and ηK are symplectic forms on S2m+1

corresponding to the complex structures given by left-multiplication by i, j and k
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on H
m, respectively. Similarly, we have an SU(2)-invariant linear map P : S2m+1⊗

S2m+1 → S2 which is the restriction of the map given on decomposables by

P (u⊗ v⊗w⊗ . . . , u′⊗ v′⊗w′⊗ . . . ) = 1

2
(u⊗u′+u′⊗u)⊗ (v∧ v′)⊗ (w∧w′)⊗· · · .

Let

µI(φ) = imP (φ, jφ),

µJ(φ) = mReP (φ, φ),

µK(φ) = m ImP (φ, φ),

for φ ∈ S2m+1. Now µ = µ1i + µ2j + µ3k is a map from S2m+1 to S2 ⊗ ImH and

S2 ∼= su(2)∗ ⊗ C as SU(2)-modules. To show µ is a moment map one checks that

each µi is su(2)-invariant, which is automatic, and that

〈dµi(φ)(ξ), a〉 = (Ωi)φ(ξ, aφ),

where φ ∈ S2m+1, ξ ∈ TφS2m+1 and a ∈ su(2); 〈·, ·〉 is the natural pairing between

su(2)∗ and su(2) and φ→ aφ is the vector field on S2m+1 induced by a.

For S1, S3 and S5, 0 is the only zero of µ (see Salamon, 1984, for S5). For S7

(m = 3), SU(2) does not act freely on H
4, but the action descends to HP(3). The

map µ then becomes a moment map on HP(3) and the corresponding quaternionic

Kähler quotient is a finite number of points. Thus the connected components of the

hyperKähler quotient µ−1(0) \{0}/SU(2) are copies of H∗/Z2. For S
9 (m = 4), we

have that Q = µ−1(0)/SU(2) is an 8-dimensional manifold with singularities and a

natural hyperKähler structure at the regular points, which is the associated bundle

of some (possibly singular) self-dual Einstein 4-manifold. With respect to the basis
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{x9, x8y, . . . , y9} of S9, the equations µ(φ) = µ(A,B,C,D,E, F,G,H,L,M) = 0

take the form

252AL− 56BH + 21CG− 12DF + 5E2 = 0,

2268AM − 196BL+ 35CH − 18DG+ 2EF = 0,

252BM − 56CL+ 21DH − 12EG+ 5F 2 = 0,

252(AB̄ + LM̄) + 56(BC̄ +HL̄) + 21(CD̄ +GH̄)

+12(DĒ + FḠ) + 10EF̄ = 0,

2268(AĀ−MM̄) + 196(BB̄ − LL̄) + 35(CC̄ −HH̄)

+18(DD̄ −GḠ) + 2(EĒ − FF̄ ) = 0.

Notice that these equations are invariant under φ → λφ for λ ∈ R. The problem

of the determination of this manifold is essentially a question in classical invariant

theory (see Mumford & Fogarty, 1982). In the second half on the nineteenth century

the invariants of Sn for n 6 6 were classified and Shioda (1967) dealt with the case

of the binary octavic (S8). As far as we know the classification in the cases of the

binary septimic and nonic have not been completed.

One can try to obtain the exceptional Wolf spaces as quaternionic Kähler quo-

tients of other Wolf spaces. The examples of the quotients of HP(n) by U(1)

and SU(2) suggest looking at isotropy irreducible spaces of the form G/(H × K)

where G is the isometry group of the original Wolf space G/L, H is the isome-

try group of the quaternionic Kähler quotient of G/L by K. We are interested

in examples where H is an exceptional group. Using the tables in Wolf (1968)

and computing the dimensions, we see that the only possible example of this form

arises from E6/(G2 × SU(3)). Note that SU(3) does not act freely on the Wolf
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space E6/(SU(6) Sp(1)). This may be seen as follows, using the notation of Buc-

cella et al. (1989). Let ei, i = 0, . . . , 7 be the standard basis for O and let e′i be a

basis for a second copy O
′ of O. Then

su(6,C) = Λ2
C

3 ⊕ su(2)S ⊕ (S2
0C

3 ⊕ Λ2
C

3 ⊗ e′7)⊗ eq ⊕ (S2
0C

3 ⊗ e′7) →֒ eC6

eC6 = Λ2
C

3 ⊕ gC2 ⊕ (S2
0C

3 ⊗ ei)⊕ (Λ2
C

3 ⊗ e′7 ⊗ ei)⊕ (S2
0C

3 ⊗ e′7),

where i runs from 1 to 7 and q takes the values 3, 6 and 7. Now su(3,C) =

Λ2
C

3 ⊕ S2
0C

3 ⊗ e′7, which is contained in su(6,C). However, this does not imply

that the quaternionic Kähler quotient does not exist, since it is only necessary that

SU(3) acts freely on the zero set of the moment map. The group G2 commutes with

SU(3) and so acts on the quaternionic Kähler quotient; this leads us to conjecture

that the quaternionic Kähler quotient of E6/(SU(6) SU(2)) by SU(3) is the space

G2/SO(4).

The growing importance of hyperKähler quotients arises from their use in an

infinite-dimensional setting, first discovered by Atiyah & Bott (1982). If P is a

principal G-bundle over a symplectic manifold (M2m, ω), for some compact semi-

simple group G, then the space A of G-connections may be identified with

A = Ω1(gP ),

where gP = P ×G g is the associated bundle. We obtain a symplectic structure

on A via (A,B) =
∫
M

Tr(A ∧B) ∧ ωm−1 for A,B ∈ A. The group G = AutP acts

on A preserving this symplectic structure. The moment map for this action maybe

identified with µ(A) = FA∧ωm−1, where FA = dA+ 1
2 [A,A] is the curvature of the
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connection A. IfM is a hyperKähler 4-manifold, the symplectic forms span Λ2
+T

∗M

and we obtain a formal hyperKähler quotient of A by G

µ−1(0)

G =
{A : FA ∈ Ω2

+(gP ) }
G ,

which is the moduli space of self-dual solutions of the Yang-Mills equations. When

M is R4, this space may also be obtained as a finite-dimensional hyperKähler quo-

tient via the adhm construction (Atiyah et al., 1978b) which describes the moduli

space in terms of matrix algebras. The remark at the end of Section 3.3 shows that

these moduli spaces are associated to quaternionic Kähler manifolds.

3.5 Quaternionic Kähler Metrics

Recall that the hyperKähler metric constructed on the associated bundle U(M)

of a quaternionic Kähler manifold M admits a homothetic H
∗-action. The sub-

group Sp(1) of H∗ acts isometrically, but it permutes the complex structures on

U(M), so the quotient constructions earlier in this chapter do not apply to this

group action. However, if we fix one complex structure I, then there is a sub-

group U(1) 6 Sp(1) which preserves I and we have a moment map for this circle

action. Upto a constant, this is the function r2 and fibrewise the level sets cor-

respond to the spheres in H. These are not only U(1)-invariant, but they are

preserved by the Sp(1)-action. The Sp(1)-quotient of a level set is just the original

quaternionic manifold M .

This discussion generalises as follows.

Theorem 3.5.1. Suppose N is a hyperKähler manifold which admits an

isometric Sp(1)-action such that
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i) there is a finite subgroup Γ of Sp(1) such that Sp(1)/Γ acts freely

on N ,

ii) Sp(1) induces a transitive action on the 2-sphere of complex structures

on N , and

iii) if XI is the vector field generated by the circle subgroup of Sp(1)

preserving I, then the (real) linear span of IXI in TN is independent

of the choice of complex structure I.

Choose a subgroup U(1) 6 Sp(1) preserving a complex structure I. Let

µ : N → R be a moment map for this U(1) with respect to the Kähler

structure defined by I, then µ−1(x) is Sp(1)-invariant and µ−1(x)/Sp(1) is

a quaternionic Kähler manifold.

Proof. Fix a complex structure I preserved by a subgroup U(1) 6 Sp(1) and let

ωI denote the Kähler form associated to I. Let X be the vector field generated by

the U(1)-action and let Y be a vector field generated by the Sp(1)-action. Then

Y is orthogonal to IX, since Y arises from a circle group preserving a complex

structure A and Y is orthogonal to AY = IX. Now,

Y ydµ = Y y(XyωI) = −g(Y, IX) = 0,

so µ is Sp(1)-invariant.

We now give two different proofs that the quotient µ−1(x)/Sp(1) is quater-

nionic Kähler. The first shows that we have a closed quaternionic 4-form on the

quotient and then uses Theorem 1.2.2 to deduce that it is quaternionic Kähler. This

is only valid if the quotient manifold has dimension at least 12. The second proof

applies in all dimensions and is more in the spirit of Galicki & Lawson’s proof (1988)

of the quaternionic Kähler quotient construction.
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Let J andK be complex structures such that IJ = K = −JI and let ωJ , ωK be

the corresponding Kähler forms. Define a 4-form by Ω = ωI∧ωI+ωJ∧ωJ+ωK∧ωK .

Let i : µ−1(x) →֒ N and π : µ−1(x)→ µ−1(x)/Sp(1) be the inclusion and projection

respectively. If n is a zero of µ, then we can write TnN = Vn ⊕ Hn where V is

the quaternionic span of X and H is the orthogonal complement. Note that this

splitting is quaternionic. The hypotheses of the theorem imply that V contains all

vectors tangent to the Sp(1)-action and that H is an Sp(1)-invariant distribution

of horizontals for the projection π. The restriction i∗Ω of Ω vanishes on V and

is Sp(1)-invariant, so i∗Ω is the pull-back of a 4-form Ω′ on the quotient. Since

H is quaternionic and π∗Ω′ is just the restriction of Ω on H, we see that Ω′ is of

the correct algebraic type to define a quaternionic structure on the quotient. Now

i∗Ω = π∗Ω′ and π∗ is injective, so dΩ = 0 implies that Ω′ is closed. This concludes

the proof if the quotient is at least 12-dimensional.

For the second proof we need to work with the covariant derivative ∇′ on the

quotient. As above, for n ∈ µ−1(x) split TnN as Vn ⊕ Hn, write i and π for the

inclusion and projection maps, and let ·H denote the horizontal component of a

tangent vector. Then if Z ∈ Hn is the pull-back of a tangent vector Z on the

quotient, we have

∇′Z = π∗((∇Z)H),

where ∇ is the Riemannian connection on N . Note that if ωA is one of the Kähler

forms on N , then if Z ∈ H and Y is any tangent vector, we have ωA(Y, Z) =

ωA(Y
H, Z). Choosing a local section s of π we obtain a local 2-form s∗ωA on the

quotient and there we obtain a rank 3 vector bundle G generated by all such local 2-

forms. Except in 4-dimensions, it is sufficient to show that this bundle is preserved

by ∇′. If ωA is such a local 2-form, then π∗ωA = (fIωI + fJωJ + fKωK)H for some
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functions fI , fJ , fK . Now

π∗∇′ωA = (∇((π∗ωA)
H))H

= (∇(fIωI + fJωJ + fKωK)H)H

= (dfI ⊗ ωI + dfJ ⊗ ωJ + dfK ⊗ ωK)H,

since by the remark above, (∇(ωI)H)H = (∇ωI)H = 0. Thus ∇′ωA is in G, as

required.

In 4-dimensions we need to calculate the curvature. If s is a local section, then

s∗ωI defines a complex structure if and only if it is a holomorphic section with

respect to I. As in the integrability proof in the previous chapter, this implies

that the curvature tensor lies in the complement of Λ0,2 ⊗ Λ0,2. This holds for

each complex structure on N and forces the curvature to be self-dual. The Einstein

condition follows from an immersion computation and the formulae of O’Neill (1966)

applied to the Riemannian submersion µ−1(x)→ µ−1(x)/Sp(1). �

The above theorem generalises to the pseudo-Riemannian category in the same

way as we remarked that the hyperKäher quotient construction could be generalised.

The hypotheses on the group action in the above theorem, imply that the action

is essentially determined by a U(1)-action and the quaternionic structure of N . This

is a quaternionic analogue of having a complexified U(1)-action, which is what is

used in the ordinary Kähler quotient construction. Note that an Sp(1)-action also

determines much of the hyperKähler structure of N .

Lemma 3.5.2. Let (N, g) be a Riemannian manifold with symplectic

form ω. Suppose N admits an isometric SU(2)-action such that the distri-

bution A spanned by SU(2) · I is 3-dimensional and the orthogonal com-

plement I⊥ in A is preserved by the almost complex structure I defined

by ω and g. Then N is locally hyperKähler.
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Proof. Locally there is a g ∈ SU(2) such that g∗ω is orthogonal to ω. Define ωI

to be ω and put ωJ = g∗ω. Define J by g(X, JY ) = ωJ(X,Y ) for tangent vectors X

and Y . Then, the I-invariance of the decomposition of A implies that IJ ∈ SU(2)·I

and hence that (IJ)2 = −1, so IJ = −JI. Define K to be IJ and define ωK in

the same way as ωJ . Then ωI , ωJ and ωK are closed 2-forms and so define a local

hyperKähler structure. �

The product of two quaternionic Kähler manifolds need not be quaternionic,

but the above theorem suggests a type of quaternionic join construction. Let

M1, M2 be quaternionic Kähler manifolds with positive scalar curvature. Con-

sider the bundles U(M1), U(M2) with their hyperKähler metrics. The product

U(M1) × U(M2) is hyperKähler and H
∗ acts diagonally. The Sp(1)-action so de-

fined satisfies the hypotheses of the theorem and we obtain a quaternionic Kähler

manifold J (M1,M2) of dimension dimM1 + dimM2 + 4. Topologically this is

the Z2-quotient of the quaternionic projectivisation of the bundle which is locally

π∗
1H(M1)⊕π∗

2H(M2)→M1×M2, where πi is projection onto the ith-factor. Thus

if M2 is a point ∗, J (M1, ∗) is topologically U(M1).

Proposition 3.5.3. Let M be a quaternionic Kähler manifold with pos-

itive scalar curvature. The quaternionic Kähler metric on J (M, ∗) agrees

with the metric g1 constructed on U(M) in Chapter 2.

Proof. First note that the join of two points J (∗, ∗) is the Z2-quotient of HP(1)

with two points removed with its standard symmetric metric gHP(1). In inhomoge-

neous coordinates,

gHP(1) = Re

(
dz̄ ⊗ dz
1 + ‖z‖2 −

z̄dz ⊗ dz̄z
(1 + ‖z‖2)2

)
= Re

(
dz̄ ⊗ dz

(1 + ‖z‖2)2
)
.
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Let gM denote the metric on M , which we will assume to be normalised so that the

constant c appearing in the definition of g1 is 1. Let gH(i) denote various copies of

the standard flat metric on H. Then the metric on J (M, ∗) is

1

r2

(
r21π

H∗
gM + gH(1) + gH(2)

)H
,

where r2 = r21 + r22; r
2
1, r

2
2 are the radius functions on U(M) and U(∗) respectively;

and H denotes projection to an appropriate horizontal subspace. Now πH
∗
gM is

horizontal and
1

r2

(
gH(1) + gH(2)

)H
is the metric on J (∗, ∗). Fix r22 = 1 and r21 = ‖z‖2,

then the metric on J (M, ∗) is

‖z‖2
1 + ‖z‖2π

H∗
gM +

1

(1 + ‖z‖2)2 g
H ,

which is one of the g1 metrics. �

If M is HP(n) then J (M, ∗) is the quotient of Hn+2 by H
∗ and we just obtain

the standard quaternionic Kähler metric on an open subset of HP(n + 1). Thus,

the quaternionic Kähler metrics on U(HP(n)) arise from the standard inclusion

H
n+1 →֒ HP(n+1). Other examples of joins of Wolf spaces will be discussed in the

next chapter. In particular, we will see that the join of CP(2) with a point is not

locally symmetric.

3.6 Potentials

Let N be a hyperKähler manifold admitting a circle action preserving I and per-

muting J and K. Hitchin et al. (1987) showed that if µ is the moment associated

to the circle action and the Kähler structure I, then µ is a Kähler potential for J

and for K. This raises the possibility of N admitting a Kähler potential for all the

complex structures simultaneously.
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Definition 3.6.1. If N is a hyperKähler manifold, a function µ : N → R

is a hyperKähler potential if for each complex structure A compatible with

the hyperKähler structure of N , µ satisfies

i∂A∂̄Aµ = ωA,

where ωA is the Kähler form of A.

The result quoted above suggests that the existence of a hyperKähler potential

may be linked with the existence of certain group actions.

Proposition 3.6.2. Suppose N is a hyperKähler manifold. If N has a

hyperKähler potential then N admits a local Sp(1)-action which permutes

the complex structures and, in the notation of the previous section, is such

that the vector field IXI is independent of I.

Conversely, if N admits such an Sp(1)-action, then N has a hy-

perKähler potential.

Proof. Let µ be a hyperKähler potential on N . For a complex structure I com-

patible with the hyperKähler structure of N , define a vector field XI by dµ =

XIyωI = −(IXI)yg, where g is the metric on N . Thus the vector field X = IXI is

independent of the choice of complex structure I. It is now sufficient to show that

the bracket [IX, JX] a non-zero multiple of KX. Firstly, if A and B are vector

fields then

0 = −d2µ(A,B) = d(Xyg)(A,B) = Ag(X,B)−Bg(X,A)− g(X, [A,B]).

Taking A = IX and B = JX yields g(X, [IX, JX]) = 0, so [IX, JX] is orthogonal

to X. If C is also a vector field then

0 = dωI(A,B,C) = AωI(B,C) +BωI(C,A) + CωI(A,B)

− ωI(A, [B,C])− ωI(B, [C,A])− ωI(C, [A,B]).
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Fix a point n of N and let Y ∈ TnN be orthogonal to the quaternionic span of X.

Extend Y locally so that it commutes with IX. Take A = Y , B = IX and C = JX

in the above formula. This gives

0 = g(Y, I[IX, JX]) + g(X, [JX, Y ]) + g(JX, I[Y, IX]) = g(Y, I[IX, JX]),

so [IX, JX] is in the span of IX, JX and KX. Now µ is a Kähler potential for I,

so d(Idµ) = ωI for each I. Thus LIXωJ = d((KX)yg) = d(K(−Xyg)) = d(Kdµ) =

ωK and similarly for cyclic permutations of I, J and K. Also, LIXωI = d(Xyg) =

d2µ = 0. Thus

L[IX,JX]ωI = [LIX , LJX ]ωI

= (LIXLJX − LJXLIX)ωI

= −LIXωK − 0

= ωJ ,

showing that [IX, JX] is non-zero and that the Sp(1)-action, resulting from inte-

gration, permutes the complex structures.

Conversely, if N admits a permuting Sp(1)-action with IXI fixed, let µI be the

moment map associated to I, then dµI = XIyωI = −(IXI)yg. Hitchin et al. (1987)

show that µI is a Kähler potential for J and K. Now let µJ be the moment map

associated to J . Then since JXJ is independent of J , we have dµJ = −(JXJ)yg =

dµI . Now µJ is a Kähler potential for I, so applying ∂I to this equation shows that

i∂IdµI = ωI and that µI is a hyperKähler potential. �

Note that on the associated bundle of a quaternionic Kähler manifold the hy-

perKähler potential is the function r2. The hyperKähler potential determines the

metric as follows. The first part of the proposition is well-known.



3.6 Potentials 71

Proposition 3.6.3. 1) If N is a Kähler manifold with metric g, Rie-

mannian connection ∇, complex structure I and Kähler form ωI , then for

a function µ on N

1

2
(∇2

X,Y µ+∇2
IX,IY µ) = g(X,Y ) for all X, Y

if and only if

i∂I ∂̄Iµ = ωI .

2) If N is a hyperKähler manifold, then for a function µ

∇2µ = g if and only if µ is a hyperKähler potential.

Proof. 1) Let X, Y be two vector fields. Now ∇ is torsion-free and I is Kähler,

so

2(i∂I ∂̄Iµ)(X,Y ) = −id(dµ+ iIdµ)(X,Y )

= d(Idµ)(X,Y )

= X(Idµ)(Y )− Y (Idµ)(X)− Idµ[X,Y ]

= X((IY )µ)− Y ((IX)µ)− (I[X,Y ])µ

= X((IY )µ)− Y ((IX)µ)− I(∇XY −∇YX)µ

= X((IY )µ)−∇X(IY )µ − Y ((IX)µ) +∇Y (IX)µ

= ∇2
X,IY µ−∇2

Y,IXµ

and the result follows.

2) This follows from part (1) by fairly general principles. Let h(X,Y ) = ∇2
X,Y µ;

we need only show that g = h if and only if g(X,Y ) = 1
2 (h(X,Y ) + h(IX, IY ))

for all vector fields X, Y and each compatible complex structure I. If g = h then

this is just the fact that I preserves the metric. If the second condition holds then

h(IX, IY ) = h(JX, JY ). Put X ′ = IX, Y ′ = IY and suppose IJ = K = −JI,

then h(X ′, Y ′) = h(KX ′,KY ′), as required. �
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Remark. If N is a hyperKähler manifold with hyperKähler potential µ, then the

vector field X dual to dµ is an infinitesimal quaternionic transformation. In the

notation of Proposition 3.6.2, X is the vector field IXI , so we have a local H
∗-action.

The system of equations

∇dµ = λg,

for some constant λ, is over determined and Weitzenböck techniques show that the

H
∗-orbits are flat and totally geodesic.

Pursuing an idea of Lebrun (1990), suppose M is a quaternionic Kähler mani-

fold with Levi-Civita connection ∇ and that M admits a hyperKähler metric in the

same quaternionic class. The hyperKähler metric trivialises the bundle H and so

gives a solution h of the twistor equation. Quaternionic invariance of this equation,

implies that e = ∇h is a section of E. From e and h one can construct infinitesimal

vector fields for a local H∗-action. We expect such metrics to be locally isometric

to an associated bundle U(M ′) for some quaternionic Kähler manifold M ′. If M is

four-dimensional, the above discussion shows that it is flat.

The classification of hyperKähler 4-manifolds admitting a permuting Sp(1)-

action was carried out by Gibbons & Pope (1979) and completed by Atiyah &

Hitchin (1988). The metrics obtained (upto finite quotients) are the flat metric

on H, the taub-nut metric and the hyperKähler metric on the moduli space of

charge 2 monopoles. Of these, the only one that can possess a hyperKähler potential

is the flat metric.

Maciocia (1989) explicitly constructs the hyperKähler potential for the mod-

uli space Mk,r of framed SU(r)-instantons of charge k over R
4. If A is such a

connection, then the hyperKähler potential is given by the ‘second moment’

m2(a) =
1

16π2

∫

R4

‖x‖2 TrF 2
A,

where FA is the curvature of A.
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Corollary 3.6.4. The manifold m−1
2 (x)/SO(3) ⊂ Mk,r/SO(3), for any

non-degenerate point x ∈ Imm2, is quaternionic Kähler. �



Chapter 4

ISOMETRY GROUPS AND

QUATERNIONIC GEOMETRY

In this chapter we will be concerned with quaternionic Kähler manifolds of

positive scalar curvature which admit sufficiently large isometry groups. We start

by showing that the twistor spaces of these manifolds may be mapped into the

projectivised nilpotent variety of the complexified isometry group. We also obtain

a map of the quaternionic Kähler manifold into the Grassmannian of oriented three-

planes in the Lie algebra of the isometry group. This leads us to study the nilpotent

variety and the Grassmannian from the point of view of quaternionic geometry.

In the second section we try to see as much of the twistor space structure of

the projectivised nilpotent orbits as possible and obtain quaternionic manifolds via

the inverse twistor construction. The following section studies the same situation

from the point of view of the nilpotent orbits themselves using the gradient flows

of certain functionals. The nilpotent orbits are already known to be hyperKähler

with an action of H∗ permuting the complex structures (Kronheimer, 1988) and in

Section 3 we see that the H∗-quotient is a quaternionic Kähler manifold and identify

points of this manifold with elements of the Grassmannian encountered in the first

section. The chapter ends with various examples of quaternionic Kähler manifolds

derived from nilpotent orbits.

74
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4.1 Embeddings of Twistor Spaces

Let M be a quaternionic Kähler manifold with positive scalar curvature and let

G be the identity component of its isometry group. For simplicity, we will assume

that G is compact and semi-simple. Compactness holds if, for example, M is

complete, since the positivity of the scalar curvature now implies thatM is compact

(Myers, 1935). We have already described the twistor space Z of M as the complex

projectivisation of either U(M) or, locally, H. However, since the vector bundle G

generated by local compatible almost complex structures onM is just the symmetric

product S2H we see that Z is also the sphere bundle of G. Explicitly, a unit vector

x ∈ H is identified with the symmetric product ix∨jx ∈ S2H. The Kähler structure

on Z now arises as a combination of the natural structure on the fibres S2 ∼= CP(1)

and the almost complex structure on TxM defined by the point of Z = S(G).

The isometry group G lifts to Z as a real form of the identity component of the

group GC of holomorphic automorphisms of the contact structure on Z (see Nitta

& Takeuchi, 1987).

Theorem 4.1.1. (Salamon, 1982) If M is a 4n-dimensional pseudo-qua-

ternionic Kähler manifold with non-zero scalar curvature and Z is the

twistor space, then

i) the fibres of Z are complex projective lines with normal bundle C2n⊗

O(1),

ii) Z admits a real structure, that is, a fixed-point free, antiholomorphic

involution,

iii) Z has a complex contact structure, the contact line bundle L is pos-

itive and the contact distribution is transverse to the fibres, that is,

the contact form θ ∈ Ω1(L) gives an isomorphism T CP(1) ∼= L|CP(1),
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iv) the space of holomorphic sections H0(L) is isomorphic to the Lie

algebra gC. �

For part (iv), see also Poon & Salamon (1989) and Kobayashi (1972).

If Z is compact then Kodaira’s Theorem (see Griffiths & Harris, 1978) shows

that for sufficiently large r the (meromorphic) map

Φ(r) : Z → P(H0(Lr)∗)

induced by evaluation, is a holomorphic embedding. Let Φ = Φ(1) be the meromor-

phic map

Φ: Z → P(H0(L)∗) ∼= P(gC
∗
).

From Chapter 3, we see that this map is the complex moment map associated to

the action of G on U(M), which should be regarded as the symplectification of Z.

So Φ is associated to both the algebraic geometry and the group theory of Z. A

base point of Φ is a pole of Φ, that is, a point at which all holomorphic sections of L

vanish.

Proposition 4.1.2. Suppose Φ has no base points and that the action

of G on M is full in the sense that there is no open set in M on which

G fixes a compatible complex structure. Then the elements of Φ(Z) are

nilpotent.

Proof. Let z be a point of Z, identify gC and gC
∗
via an invariant inner product,

and choose a representative e ∈ gC \ {0} such that Φ(z) = [e]. We claim that

e is nilpotent if for every G-invariant polynomial p we have p(e) = 0. To see this

choose an embedding of gC in gl(m,C) (this exists since G is compact). Then put e

in Jordan form and consider the polynomials pn(x) = Tr(xn). These are invariant
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polynomials for GL(m,C) and hence for G, so Tr(en) = 0 for all n and all symmetric

polynomials in the eigenvalues of e vanish. Hence zero is the only eigenvalue of e

and e is nilpotent.

Suppose there is a non-trivial, G-invariant polynomial p ∈ SkH0(L) ∼= Skg of

least degree such that p(e) 6= 0. Let sk be the map

sk : S
kH0(L)→ H0(Lk).

Now p(e) = (skp)(e
⊗k) is non-zero, so we have a G-invariant section σ = skp

of H0(Lk). Restricting to a fibre CP(1) of Z → M we have that σ|CP(1) is a

holomorphic section of Lk|CP(1) = O(2k), so σ must have a zero on CP(1). Fur-

thermore, for a generic CP(1) this zero must have multiplicity one, otherwise there

is an invariant polynomial of smaller degree. Using the action of G, we now obtain

a holomorphic, invariant section of Z on an open set, which is not possible by our

fullness hypothesis. So σ is identically zero and p(e) = 0. Thus e is a zero of each

G-invariant polynomial and so must be nilpotent. �

Since G acts on Z preserving the Kähler structure we have a real moment

map µ : Z → g∗. We may extend this linearly to a map G → g∗; this is just the

map A 7→ (∇A)sp (1) discussed in Chapter 3, because the fibre of G is isomorphic

to sp(1). So for each point x inM we have a map Ψ: Gx ∼= sp(1)→ g. In Chapter 2

we saw that for a Wolf space this map is a homomorphism, but in general this

map does not preserve the Lie algebra structure. The maps Φ and Ψ are related

as follows: let e1 be a unit vector in Gx and extend to an oriented, orthonormal

basis e1, e2, e3, then Φ(e1) = [Ψ(e2) + iΨ(e3)] ∈ P(gC). Now e2 + ie3 is isotropic

in Gx ⊗ C, so the above proposition shows that V = Ψ(Gx) is such that the image

of the isotropic elements, under the complex linear extension of Ψ, are nilpotent.

Let F denote the set of all oriented 3-planes V ∈ G̃r3(g) whose isotropic elements

are nilpotent.
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Proposition 4.1.3. If the action of G is full and Φ has no base points,

then Ψ(Gx) lies in the variety F .

Proof. It only remains to show that Ψ(Gx) is three-dimensional. The hypothesis

that Φ has no base points implies that Ψ(Gx) is at least one-dimensional. If the

image is not three-dimensional, then there exist orthogonal unit vectors e1 and e2

in Gx with Ψ(e1) 6= 0 and Ψ(e2) ∈ 〈Ψ(e1)〉. Thus Ψ(e1± ie2) are complex multiples

of Ψ(e1) ∈ g. It is now sufficient to show that g contains no (non-zero) nilpotent

elements.

As above, we may assume that G is a subgroup of SU(n) for some n. Now

if A ∈ su(n) is nilpotent, we have TrAm = 0, for all m. But A = −Āt, so

0 = TrA2 = −TrAĀt = −∑
i,j

|aij |2 and A is identically zero. �

Thus, F ⊂ G̃r3(g) and the nilpotent variety in gC contain local models for M

and U(M), respectively. In the next two sections we will study the quaternionic

geometry of these two varieties.

To give an example of F , consider the case where g is so(4) = so(3)⊕so(3). Let

e1, e2, e3, f1, f2, f3 be oriented orthogonal bases for each of the so(3)-factors such

that

[e1, e2] = −2e3, [f1, f2] = −2f3, etc.

The elements of F are now the three planes 〈λe1 + µf1, λe2 + µf2, λe3 + µf3〉, for

(λ, µ) = (cos θ, sin θ) ∈ S1, together with those obtained after applying an element

of SO(3) to either the ei or the fi. These three planes are images of homomorphisms

only if λ/µ is 0, 1 or ∞. The elements of F with λ/µ ∈ (0,∞) and λ > 0 are in

bijective correspondence with S4/Z2 with two points removed.
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4.2 Projective Nilpotent Orbits

From the previous section one would hope to be able to show that projective nilpo-

tent orbits are twistor spaces of quaternionic Kähler manifolds. We saw in Chapter 2

that this was indeed the case for the highest root orbit, since this is the associated

bundle of the Wolf space with isometry group G.

Let O be a nilpotent orbit of a complex semi-simple Lie algebra gC. There is

a contact structure on P(O) derived form the complex symplectic structure ω of O

described by Kirillov, Kostant & Souriau (Kirillov, 1972). If X is an element of O,

then ω([X,A], [X,B]) = 〈X, [A,B]〉. The contact form θ is the contraction of ω

with the vector field generating the R-action, so θ([X,A]) = ω([X,−H], [X,A]) =

−〈X, [H,A]〉 = 〈[X,H], A〉 = −2〈X,A〉. Let σ be the real structure on gC whose

fixed point set is g. Then σ∗θ = θ̄, so the natural real structure σ on P(O) respects

the contact structure.

Given X ∈ O, the Jacobson-Morosov Theorem (Carter, 1985, Kostant, 1959)

states that there are elements Y and H of gC such that 〈X,Y,H〉 is an sl(2,C)-

triplet, that is X, Y and H satisfy

[X,Y ] = H, [H,X] = 2X and [H,Y ] = −2Y.

This shows that R acts on O via scaling and that we have a Lie algebra homomor-

phism ρ : sl(2,C)→ gC such that ρ

(
0 1

0 0

)
= X, given by

ρ

(
0 1

0 0

)
= X, ρ

(
0 0

1 0

)
= Y and ρ

(
1 0

0 −1

)
= H.

Without loss of generality, ρ is the complexification of a real homomorphism su(2)→

g, where g is the Lie algebra of a compact real form G of GC (see Kronheimer, 1988).
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Let x ∈ P(O) be the point defined by X and let N be the set of nilpotent

elements in sl(2,C). Then x lies in P(ρN ) = CP(1). Let ν be the normal bundle

of this CP(1) in P(O). If P(O) is a twistor space then we expect ν to be a direct

sum of O(1)’s. Now gC splits under the action of sl(2,C) into a direct sum of

SU(2)-modules

gC = S2 ⊕
⊕

k>0

AkS
k,

where the first S2 is the span of X, Y and H, Ak are trivial as SU(2)-modules and

juxtaposition denotes tensor product. The tangent space to O at X is

TXO = (adX)gC,

so the normal bundle at x is given by

νx ∼= (adX)
⊕

k>1

AkS
k.

Restricting to the circle subgroup defined by H, we have a further splitting of ν

into U(1)-bundles. Since (adX)Sk is just Sk without the (−k)-weight space, a sum-

mand (adX)Sk of ν consists of line bundles whose Chern classes are k, k − 2, . . . , 2−

k. Thus the Chern class of (adX)Sk is k = dim(adX)Sk and we have

c1(ν) = rank ν.

Let evx be the evaluation map H0(ν) → νx. Consider the map A 7→ [X,A].

This is a map from gC to the tangent space of the nilpotent orbit at X and gives a

well-defined element of the tangent space TxP(O) of the projective nilpotent orbit

at x = [X]. We denote this tangent vector by x(A). The composition

gC −→ TxP(O) −→ TxP(O)/TxCP(1) = νx,
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where the first map is A 7→ x(A) and the second is projection, is clearly surjective.

Letting x range over CP(1) gives a map from the complex Lie algebra toH0(TP(O)).

Now the composition

gC −→ H0(TP(O)) −→ H0(ν)
evx−→ νx

agrees with the map given above and so evx must be surjective. Any holomorphic

bundle over CP(1) splits holomorphically as a direct sum of line bundles O(k) (see

Griffiths & Harris, 1978), so

ν =
⊕

k

WkO(k),

for some complex vector spaces Wk. Let µ be the non-negative part of ν, so that

µ =
⊕
k>0

WkO(k). Then we have the exact sequence

0 −→ µ −→ ν
π−→ ν/µ −→ 0.

If s is a holomorphic section of ν, then πs = 0 so evx(s) = s(x) ∈ µx. But evx is

surjective so π is zero and ν =
⊕
k>0

WkO(k). In particular, we have

H1(ν) = 0.

Let hi(·) be dimHi(·). By the Riemann-Roch Theorem, we have that

h0(ν)− h1(ν) = χhol(ν) = ch(ν) · Td(CP(1))

= c1(ν) + rank ν

= 2 rank ν,
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since ch(ν) is rank ν in dimension 0 and c1(ν) in dimension 1 and Td(CP(1)) is 1

in both dimensions 0 and 1. Thus,

h0(ν) = 2 rank ν.

If we identify the nilpotent orbit N in sl(2,C) with its image ρ(N ), then the

map (x,A) 7→ x(A) gives the following commutative diagram

CP(1)× ⊕
k>1

AkS
k −−−−−−−−→ ν
ց ւ

CP(1)

This map is complex linear and hence holomorphic and the splitting
⊕
k>1

AkS
k

induces a holomorphic splitting of ν. So, holomorphically, we may work with one

summand ν′ = (adX)Sk of ν. The above cohomological arguments also apply to ν′,

in particular

c1(ν
′) = k = rank ν′

h0(ν′) = 2k.

Now the map

Sk = H0(CP(1)× Sk) −→ H0(ν′) (4.2.1)

is equivariant and we have a surjection

CP(1)× Sk −→ ν′. (4.2.2)

Suppose ν′ = B0 + B1O(1) + · · · , where the Bi are SU(2)-modules. Then any

Sr ⊂ B0 is in the image of Sk under (4.2.1). But Sr ⊂ ν′, so r < k, since rank ν′ = k
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and dimSr = r+1. Now Schur’s Lemma implies that the map Sk → Sr is zero and

so the map Sk → B0 is also trivial. Surjectivity of (4.2.2) now forces B0 = {0} and

ν′ =
⊕

t>1

BtO(t).

But the equation c1(ν
′) = rank ν′ says

∑
t>1

(dimBt)t =
∑
t>1

dimBt, so ν
′ = B1O(1)

and

ν = BO(1),

for some SU(2)-module B.

Write B1 as
⊕
i

Sli . Then

H0(ν′) = B1 ⊗ S1 ∼=
⊕

i

(Sli+1 + Sli−1)

and h0(ν′) = 2
∑
i

li+1. Also, Sk ⊂ H0(ν′) so one of Sk +Sk−2 or Sk+2 +Sk must

also be contained in H0(ν′). A dimension count shows that H0(ν′) = Sk ⊕ Sk−2

and

H0(ν) =
⊕

k>1

Ak(S
k ⊕ Sk−2).

Thus we have proved the following.

Proposition 4.2.1. If gC splits as the direct sum S2 ⊕ ⊕
k>0

AkS
k, under

the action of sl(2,C). Then the normal bundle of CP(1) = P(ρN ) in P(O)

is 
⊕

k>1

AkS
k−1


⊗O(1).

�

Remark. This decomposition may also be obtained as follows. Let V be the

complexification of a real oriented three-plane whose isotropic elements lie in O.
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Then TP(gC)/TP(V ) is a direct sum of O(1)’s. If CP(1) is the projectivisation of

the isotropic elements of V , then the map CP(1)→ P(V ) ∼= CP(2) has degree 2 and

µ = TP(gC)/TP(V )|CP(1)
∼= V ⊥ ⊗ O(2). Now the normal bundle ν of CP(1) is a

non-negative subbundle of µ, so ν = AO+BO(1) +CO(2), for some vector spaces

A, B and C. An O(2)-summand gives a non-zero holomorphic section s of ν(−2)

and hence of µ(−2). This is a constant vector v in V ⊥ which also lies in TxO for

each x ∈ CP(1). Thus, if c1(ν) = rank ν, we have that ν is a direct sum of O(1)’s if

and only if
⋂

[X]∈CP(1)

ad(X)gC = {0}. If V arises from a homomorphism, then this

second condition is clearly satisfied.

This information about P(O) is nearly sufficient to prove directly that it is the

twistor space of a quaternionic Kähler manifold.

Theorem 4.2.2. The manifold G/N(Sp(1)) is a submanifold of a pseudo-

quaternionic Kähler manifold whose twistor space is an open subset of a

projectivised nilpotent orbit P(O).

Note that if O is a highest root orbit and G is simple and centreless, then the

manifold G/N(Sp(1)) is just the Wolf space discussed in Chapter 2. This result

should be contrasted with the classification of homogeneous Kähler manifolds, which

may be described as G/N(U(1)) for some circle subgroup U(1) of G.

Proof. Starting with a real homomorphism ρ : su(2)→ g such that ρ(N ) ⊂ O, we

obtain a CP(1) ⊂ P(O) with normal bundle ν ∼= BO(1). In particular, H1(ν) van-

ishes, so Kodaira’s Theorem provides us with a maximal familyM of deformations

of dimension h0(ν) = 2 rank ν (Kodaira, 1962). Let T be the incidence manifold

for P(O)×M and consider the following diagram, where each map is the canonical
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projection.

T

q ւ ց p

P(O) M

Now for points of CP(1) we have

rank q = dim T − h0(ν(−1))

= 2 rank ν + 1− rank ν

= rank ν + 1

= dimP(O).

By Riemann-Roch, this computation is equivalent to h1(ν(−1)) = 0. A result of

Grothendieck (Hartshorne, 1977) asserts that the function x 7→ h1(ν(−1))x is lower

semi-continuous and so h1(ν(−1)) = 0 in a neighbourhood of CP(1). Thus q has

rank dimP(O) in a neighbourhood of the orbit of CP(1) under G. This orbit is

an S2-bundle over the manifold G/N(Sp(1)) where N(Sp(1)) is the normaliser of

subgroup Sp(1) of G obtained from Im ρ via exponentiation. The real and contact

structures on the CP(1)’s in this orbit extend to the deformation space. Our result

now follows from a theorem of LeBrun (1989) which states that for a complex

contact manifold of dimension 2n + 1 > 5 with fixed-point-free anti-holomorphic

involution σ respecting the contact structure, the set of σ-invariant rational curves

with normal bundle 2nO(1) is naturally a pseudo-quaternionic Kähler manifold of

dimension 4n. (A non-Riemannian version of LeBrun’s result was discussed by

Pedersen & Poon, 1989.) �

The above theorem would show that the whole of P(O) is a twistor space if we could

prove that there is an appropriate real CP(1) through each point. The Jacobson-

Morosov Theorem already shows that there each point lies in a CP(1) with cor-

rect normal bundle, but in general this need not be σ-invariant. Note that the
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manifold M is a complex Riemannian manifold with quaternionic structure (i.e.

a manifold with structure group Sp(n,C) Sp(1,C) and a compatible torsion-free

connection) associated to the whole projectivised orbit.

4.3 Trajectories and Quaternionic Kähler Metrics

The manifold G/N(Sp(1)) is contained in the variety F ⊂ G̃r3(g) introduced in

the first part of this chapter. The proof at the end of the previous section shows

that G/N(Sp(1)) lies in a quaternionic Kähler manifold which is contained in F .

Given an invariant inner product 〈·, ·〉 on g, there is a natural functional ψ, defined

on G̃r3(g) as follows. Let V be an oriented 3-plane in g and let v1, v2, v3 be an

oriented basis for V . Then

ψ(V ) = ψ(v1, v2, v3) = −
1

ℓ
〈v1, [v2, v3]〉,

where

ℓ2 = ‖v1‖2‖v2‖2‖v3‖2

− 〈v1, v2〉2‖v3‖2 − 〈v2, v3〉2‖v1‖2 − 〈v3, v1〉2‖v2‖2

+ 2〈v1, v2〉〈v2, v3〉〈v3, v1〉.

Note that if e1, e2, e3 is an orthonormal basis for V then ψ(V ) = −〈e1, [e2, e3]〉. The

gradient flow equations for ψ, V̇ = ∇ψ(V ), are

ė1 = −[e2, e3]− ψe1,

ė2 = −[e3, e1]− ψe2,

ė3 = −[e1, e2]− ψe3.
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The right-hand sides of these equations are just the components of the Lie brackets

which are orthogonal to V .

The non-zero critical points of ψ correspond to images of homomorphisms

ρ : su(2) → g, so these critical sets are the manifolds G/N(Sp(1)). Dynkin (1952)

defines the index jρ of ρ to be the constant such that 〈ρ(x), ρ(y)〉 = jρ〈x, y〉. So,

at a homomorphism ρ, ψ(ρ(sp(1))) =
√
2/
√
jρ. Results of Dynkin now show that

0 < ψ(ρ(sp(1))) 6
√
2 and that 1√

2
ψ is a calibration on G̃r3(g) with the absolute

maxima of ψ occurring at the Wolf space with isometry group G.

Returning to the example of the first section, where g = so(4) = so(3)⊕ so(3),

the trajectories of ψ are obtained by varying the S1-parameter (λ, µ). The critical

points correspond to the homomorphisms from sp(1) to each so(3) factor of so(4)

and to the diagonal copy of so(3) in so(4). In the first two cases the value of ψ

is
√
2 and in the diagonal case ψ is 1. The space of trajectories from the diagonal

homomorphism to one so(3)-factor is thus RP(3).

Lemma 4.3.1. The gradient flow of ψ preserves the variety F and the

nilpotent orbits associated to elements of F .

Proof. Given an oriented, orthonormal basis e1, e2, e3 for an element V ∈ F , let

e′1 = (1− tψ)e1 − t[e2, e3], etc.,

be a path parameterised by t ∈ R. Upto order t2, e′1, e
′
2, e

′
3 are orthonormal, so we

need to show that e′1 + ie′2 is nilpotent to first order.

We claim that X ∈ gC 6 gl(m,C) is nilpotent if and only if X = [X,Y ] for

some Y ∈ gC. The forward implication is part of the Jacobson-Morosov Theorem.

For the converse, let A be a Jordan block of X, so X is conjugate to

(
A 0

0 B

)
.
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Now [(
A 0

0 B

)
,

(
α β

γ δ

)]
=

(
[A,α] ∗

∗ [B, δ]

)
,

and X = [X,Y ] implies A = [A,α]. Since A is a Jordan block it has minimum

polynomial (x− λI)n. But 0 = Tr[A,α] = TrA = nλ, so λ = 0 and A is nilpotent.

Now V ∈ F , so e1 + ie2 is nilpotent and there exists Y such that e1 + ie2 =

[e1 + ie2, Y ]. We have

e′1 + ie′2 = (1− tψ)(e1 + ie2) + t[e1 + ie2, ie3]

and [e′1 + ie′2, Y ] = (1− tψ)[e1 + ie2, Y ] + t[[e1 + ie2, ie3], Y ]

= (1− tψ)[e1 + ie2, Y ] + t[[e1 + ie2, Y ], ie3]− t[e1 + ie2, [ie3, Y ]],

so

e′1 + ie′2 = [e′1 + ie′2, Y + t[ie3, Y ]] to order t2,

as required. Note that, to first order, Y + t[ie3, Y ] lies in the GC-orbit of Y . �

From the lower semi-continuity of h1, we may use the flow of ψ to extend the pseudo-

quaternionic Kähler manifold constructed at the end of the previous section. We

shall see that the twistor space is the whole of P(O) from the following argument in

the Lie algebra. The proof will not depend on the discussion of F , but we shall see

that the variety F does provide a good description of the quaternionic geometry.

The analogue of ψ on g3 is the Chern-Simons functional ϕ : g × g × g → R

defined by

ϕ(A) = ϕ(A1, A2, A3) =
3∑

i=1

〈Ai, Ai〉+ 〈A1, [A2, A3]〉.

The gradient flow equation Ȧ = −∇ϕ(A) is

Ȧ1 = −2A1 − [A2, A3],

Ȧ2 = −2A2 − [A3, A1],

Ȧ3 = −2A3 − [A1, A2].
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Note that these trajectories project to (unparameterised) trajectories of ψ on G̃r3(g),

since the right-hand sides project to the component of the Lie bracket that is or-

thogonal to the three-plane VA spanned by A1, A2, A3. Let M(ρ) denote the space

of solutions of these equations such that lim
t→∞

A(t) = 0 and lim
t→−∞

A(t) is conjugate

to ρ under the adjoint action of the real group G. Here A has been identified with

the linear map su(2)→ g given by

(−i 0

0 i

)
7→ A1,

(
0 1

−1 0

)
7→ A2 and

(
0 i

i 0

)
7→ A3.

Lemma 4.3.2. If A is a solution of Ȧ = −∇ϕ(A) such that lim
t→−∞

A(t)

is a homomorphism su(2)→ g (for example, if A is a point of M(ρ)) then

A1, A2, A3 is a conformal basis for VA.

Proof.
d
dt 〈A1, A2〉 = −4〈A1, A2〉, so 〈A1, A2〉 = Ce−4t for some constant C. At

a homomorphism −2A2 = [A3, A1], so 2〈A1, A2〉 = −〈A1, [A3, A1]〉 = 0. Letting

t→ −∞ shows that C = 0 and that 〈A1, A2〉 = 0 for all t.

Now d
dt‖A1‖2 = −4‖A1‖2 − 2〈A1, [A2, A3]〉, so

‖A1‖2 = c1e
−4t − 2e−4t

∫ t

0

e4s〈A1, [A2, A3]〉 ds.

But the integrand is the same for each Ai and as t → −∞ the norms of the Ai

approach the same non-zero constant, so ‖A1‖ = ‖A2‖ = ‖A3‖ for all t. �

Kronheimer (1988) shows thatM(ρ) is diffeomorphic to the nilpotent orbit O ⊂

gC containing X. He also interpretsM(ρ) as a moduli space of framed G-instantons

with SU(2)-action on the 4-manifold SU(2) × R and shows that M(ρ) is a hy-

perKähler manifold. The space M(ρ) also admits an action of H∗/Z2
∼= Aut(su(2))

induced by composition and this action permutes the complex structures.
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To obtain an identification between M(ρ) and O, introduce a fourth g-valued

function A0(t) and replace the gradient flow equations above by

Ȧ1 = −2A1 − [A0, A1]− [A2, A3],

Ȧ2 = −2A2 − [A0, A2]− [A3, A1],

Ȧ3 = −2A3 − [A0, A3]− [A1, A2].

Introducing gC-valued functions given by 2α = A0 + iA1 and 2β = A2 + iA3, we

obtain one real equation and one complex equation

(α̇+ α̇∗) + 2(α+ α∗) + 2([α, α∗] + [β, β∗]) = 0,

β̇ + 2β + 2[α, β] = 0.

These equations are invariant under the action of the real gauge group G of all

smooth maps g : R→ G, given by A0 7→ Ad(g)(A0)− ġg−1 and Ai 7→ Ad(g)(Ai) for

i = 1, 2, 3. The complex equation is invariant under the complex gauge group GC

of smooth maps g : R→ GC which acts via

α 7→ Ad(g)α− 1
2 ġg

−1 and β 7→ Ad(g)β.

One now makes the following definitions.

Definition 4.3.3. (Kronheimer) A complex trajectory associated to ρ is

a pair of smooth functions α, β : R→ gC such that

i) α and β satisfy the complex equation,

ii) as t→∞ we have α(t)→ 0 and β(t)→ 0,

iii) as t → −∞ we have 2α(t) → Ad(g)(H) and β(t) → Ad(g)(Y ) for

some g in the compact group G,
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iv) α and β approach their limits as t→ ±∞ with exponential decay.

Two complex trajectories are equivalent if there is an element g of the

complex gauge group GC taking one to the other and such that g(t) → 1

as t→∞.

Proposition 4.3.4. (Kronheimer) The equivalence classes of the complex

trajectories associated with ρ are parameterised by the nilpotent orbit O.

Explicitly, Kronheimer shows that if two trajectories agree outside a compact

subset of R then they are equivalent and that each complex trajectory is equivalent

to a trajectory (α, β) such that

(α(t), β(t)) =

{
( 12H,Y ) if t ∈ (−∞, 0],

(0, e−2tε) if t ∈ [1,∞),
(4.3.1)

where ε ∈ O is uniquely determined by the trajectory. The U(1) in Sp(1) which

preserves the natural complex structure I on the space of equivalence classes of

complex trajectories, acts on (α, β) as multiplication by (0, e2iθ).

Lemma 4.3.5. The action of U(1) on the trajectories given in (4.3.1) is

given by eiθ · ε = e2iθε.

Proof. We have eiθ · (α, β) = (α, e2iθβ), so it is sufficient to find a gauge transfor-

mation f such that

f(t) =

{
g if t ∈ (−∞, 0],

1 if t ∈ [1,∞),

where g ∈ GC is such that 〈e−2iθX, e2iθY,H〉 = Ad g〈X,Y,H〉. Since these two

sl(2,C)-triplets have H in common, a result of Dynkin’s shows that they are conju-

gate under the action of GC. In our case, we may take g to be ρ

(
e−iθ 0

0 eiθ

)
. �



4.3 Trajectories and Quaternionic Kähler Metrics 92

LetXI denote the vector field generated by this U(1)-action, then IXI is vector

field generated by the R-action

λ · ε = λ2ε,

which is independent of the choice of complex structure I on M(ρ). The results of

the previous chapter now show the following.

Propoition 4.3.6. The quotient of O ∼= M(ρ) by H
∗ is a quaternionic

Kähler manifold. �

The above R-action can be seen directly on M(ρ) as reparameterization of the

trajectories. If we map t 7→ t− τ we obtain the trajectory

(α(t), β(t)) =

{
( 12H,Y ) if t ∈ (−∞, τ ],

(0, e−2te2τε) if t ∈ [1 + τ,∞),

which agrees with (4.3.1) with ε replaced by e2τε outside the compact interval

[min{0, τ},max{1, 1 + τ}].

The real structure on a twistor space P(O) is given by the action of j on U(M).

Using the notation of the Lemma, the action of j ∈ H
∗ is given by j · (α, β) =

(σα, σβ) and using the gauge transformation f with g = ρ(j) = ρ

(
0 1

−1 0

)
shows

that j · ε = σε, where σ is the real structure on gC defining g.

Given two homomorphisms ρ+ and ρ− of sp(1) into g, letM(ρ−, ρ+) denote the

space of trajectories A of ϕ such that lim
t→∞

A(t) = ρ+ and lim
t→−∞

A(t) is conjugate

to ρ− under the action of G.

Proposition 4.3.7. i) A trajectory of ψ on F between the images of

homomorphisms Vρ− and Vρ+ may be lifted to a trajectory in M(ρ−, ρ+)

and this lifting is unique upto the action of H∗.
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ii) For a trajectory A ∈ M(ρ−), the three-plane lim
t→∞

VA(t) is a well-

defined element of F . Moreover, if lim
t→−∞

A(t) = ρ− the projection of this

trajectory may be extended to a trajectory between Vρ− and Vρ+ , for some

homomorphism ρ+ : sp(1)→ g and every point on this extended trajectory

arises for some such ϕ-trajectory A.

Proof. To show the existence of a lifting, let ei(t) be a path of orthonormal bases

for a ψ-trajectory V (t) in F and define

Ai(t) = g(t)ei(f(t)), for i = 1, 2, 3,

where g and f are arbitrary, differentiable, real-valued functions to be determined.

For A to be a trajectory of ϕ, we require

Ȧ1 = ġg−1A1 − ḟψA1 − ḟg−1[A2, A3] = −2A1 − [A2, A3], etc.

If A1, A2, A3 do not span the image of a homomorphism, then A1 and [A2, A3] are

linearly independent, so

ḟ = g,

ġg−1 − ψḟ = −2.

Since ψ is bounded on the trajectory, this has the solution

g(t) =
e−2t

k −
∫ t
0
ψ(τ)e−2τ dτ

,

f(t) =

∫ t

0

e−2σ

k −
∫ σ
0
ψ(τ)e−2τ dτ

dσ + c,
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for some constants k and c. Moreover, for an appropriate choice of k, lim
t→∞

g(t) is

non-zero.

To study the uniqueness of this lifting we look at reparameterizations of ϕ-

trajectories. Let A be a ϕ-trajectory from ρ− to ρ+ and define Ã(t) to be the

path g(t)h(t)A(f(t)), where again f and g are real-valued, but now h takes values

in the group SO(3). For Ã to be a ϕ-trajectory, we have that

((gḣ+ ġh)− 2ghḟ + 2gh)A1 − ghḟ [A2, A3] + g2[hA2, hA3] = 0, etc.

Now h ∈ SO(3) implies that [hA2, hA3] = h[A2, A3], so if we are not at a homo-

morphism ḟ = g and

gh−1ḣ = (−ġ + 2gḟ − 2g) id .

If ḣ is non-zero then h must be proportional to the identity matrix, but this implies

that h ≡ 1. So h is always a constant matrix and ġ − 2gḟ + 2g = 0. This equation

is just the one obtained above, but with ψ replaced by 2. This now gives

g(t) =
1

1 + λe2t
,

f(t) = − 1
2 log |e−2t + λ|+ c,

where λ and c are constants.

Fix h = 1 and c = 0. If λ = 0, we just obtain the original trajectory. For

λ > 0, Ã(t) → ρ− as t → −∞. As t → ∞, Ã(t) → 0 but f(t) → − 1
2 log λ, so

VÃ(t) → VA(− 1
2 log λ).

If λ < 0, then g and f have singularities at t = t0 = − 1
2 log(−λ) and the

trajectory splits into two parts. For t < t0, the limit as t → −∞ is still ρ−, and

in F , as t ր t0, the three-plane VÃ approaches Vρ+ . For t > t0, we have an

orientation reversed version of the case λ > 0.
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Fix λ = −1, so that t0 = 0. We claim that as t ր 0, ‖Ãi‖ approaches a

non-zero limit. Recall that

Ãi(t) =
1

1− e2tAi(−
1
2 log(e

−2t − 1)), for i = 1, 2, 3 and t < 0.

Suppose A1(t) = e−2t(γ+ ε(t)), where ε(t)→ 0 as t→∞ and γ is non-zero. Then,

as t→ 0, we have Ã1 → γ, as required.

To show that A1 has the right behaviour at infinity, recall that

‖A1(t)‖2 = Ce−4t − 2e−4t

∫ t

T

e4τφ(τ) dτ,

where φ = 〈A1, [A2, A3]〉 and C = e4T ‖A1(T )‖2. Now φ̇ = −6φ − (〈A1, A2〉2 +

〈A2, A3〉2 + 〈A3, A1〉2) 6 −6φ, so 0 6 φ(t) 6 e−6tk, where k = e6Tφ(T ) for t > T

and

Ce−4t > ‖A1(t)‖2 > (C − k)e−4t + e−6tk,

so we need only ensure that C > k, that is e2Tφ(T ) < ‖A1‖2(T ). But φ 6 2‖A1‖3,

so it is sufficient to have 2e2T ‖A1(T )‖ < 1 and this is possible, since ‖A1(T )‖ is

bounded as T → −∞.

It now only remains to show that if A is a ϕ-trajectory from ρ− to zero, then the

limit three-plane lies in F . Fix attention on the isotropic element β = A2+iA3. Let

α = iA1. Now Kronheimer shows that there is a complex gauge transformation g

such that on [1,∞), g · (α, β) = (0, e−2tε), for some ε in the nilpotent orbit given

by ρ−. In particular, e2tβ = Ad(g−1)ε, so we obtain a nilpotent element in the

limit. �

The manifold M(ρ−, ρ+) is a transverse slice to the orbit given by ρ+ through

the orbit associated to ρ− (Slodowy, 1980) and Kronheimer shows this is a hyper-

Kähler manifold. In F , this slice is just seen as all the points on trajectories to Vρ+

from the real orbit of Vρ− , together with the points of the Vρ−-orbit.
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4.4 Examples

The classification of nilpotent orbits in the complexification of a classical Lie algebra

is just the classification of the Jordan forms of matrices which arise and so the orbits

are classified by various partitions of n, for some fixed integer n. The dimension

of an orbit may be calculated directly from the partitions (Springer & Steinberg,

1970) and, using the results of Dynkin (1952) and Bala & Carter (1974), for the

first few semi-simple Lie algebras, we obtain the nilpotent orbits of the dimensions

given in Table 1 (see also Carter, 1985). Unless otherwise stated, by ‘dimension’ we

mean ‘real dimension.’

Lie algebra Dimension Real Dimensions of Nilpotent Orbits

so(3) = su(2) = sp(1) 3 4

so(4) = sp(1) + sp(1) 6 8, 4, 4

su(3) 8 12, 8

so(5) = sp(2) 10 16, 12, 8

g2 14 24, 20, 16, 12

so(6) = su(4) 15 24, 20, 16, 12

sp(3) 21 36, 32, 28, 28, 24, 20, 12

so(7) 21 36, 32, 28, 24, 20, 16

su(5) 24 40, 36, 32, 28, 24, 16

sp(4) 36 64, 60, 56, 56, 52, 48, 48, 44, 40, 40, 36, 28, 16

Table 1.

Dimensions of nilpotent orbits of some semi-simple Lie algebras.
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Four-dimensional Models. If we regard nilpotent orbits as models for associated

bundles of quaternionic Kähler manifolds, then in 4-dimensions we have the highest

root orbits of su(3) and sp(2) and the regular orbit in so(4). The first two are just the

associated bundles of the Wolf spaces CP(2) and HP(1), respectively. Hitchin (1979)

showed that these were the only two complete, self-dual Einstein manifolds with

positive scalar curvature. The regular orbit (the unique nilpotent orbit of highest

dimension) in so(4) is just the product of the highest root orbits of each sp(1) factor,

and so it is the associated bundle for the quaternionic join of two points, which is an

incomplete manifold. This orbit is a finite quotient of the highest root orbit of sp(2).

More generally, we may describe the regular orbit of sp(p1)⊕· · ·⊕ sp(pr) as a finite

quotient of an open subset of the highest root orbit of sp(n), where
r∑
i=1

pi = n. The

highest root orbit in sp(n,C) ∼= S2
C

2n consists of those elements v2, where v ∈ C
2n.

Write v = vp1 + · · · + vpr corresponding to the splitting C
2n = C

2p1 + · · · + C
2pr ,

then the map to sp(p1)⊕ · · · ⊕ sp(pr) is given by

v2 7→ v2p1 + · · ·+ v2pr .

Restricting to the open set consisting of v such that no component vpi is zero

gives the regular orbit as a Z
r−1
2 -quotient and shows that the quaternionic Kähler

manifold obtained is

HP(n− 1) \
⋃

i

HP(n− pi − 1)

/
Z
r−1
2 .

This space is just the quaternionic join J (HP(p1), . . . ,HP(pr)). Poon (1986) showed

that the projectivised regular orbit of so(4,C) could be desingularised in such a way

as to give a self-dual structure on the connected sum CP(2)#CP(2). Donaldson &

Friedman (1989) extended this result to define self-dual metrics on other connected
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sums of self-dual manifolds. This example suggests that one should be able to extend

their result to construct quaternionic metrics on the connected sums of quaternionic

manifolds.

Eight-dimensional Models. We have the following. Firstly, the highest root

orbits for g2, su(4) and sp(3) and the regular orbits of sp(1) ⊕ sp(1) ⊕ sp(1) and

su(3)⊕sp(1) giving the Wolf spaces G2/SO(4), Gr2(C
4) and HP(2) and the incom-

plete spaces HP(2) \ 3HP(1)/Z2 ×Z2 and U(CP(2)). Next there is the subregular

orbit (the unique orbit of codimension 4 in the nilpotent variety) of sp(2,C) ∼=

so(5,C). Because of the isomorphism between these algebras, the description of

this orbit leads to two different generalisations.

Proposition 4.4.1. i) In sp(n,C), one of the nilpotent orbits of dimen-

sion 8n − 4 is double covered by an open subset of the highest root or-

bit in su(2n,C). The quaternionic Kähler manifold obtained from this

Sp(n,C)-orbit is Gr2(C
2n) \HP(n− 1)

/
Z2.

ii) In so(q,C), one of the nilpotent orbits of dimension 4q − 8 is dou-

ble covered by an open subset of the highest root orbit in so(q + 1,C).

The quaternionic Kähler manifold obtained from this SO(q,C)-orbit is

G̃r4(R
q+1) \ G̃r4(R

q)
/
Z2.

Proof. i) The Lie algebra su(m,C) consists of the trace-free elements of End(Cm)

and the highest root orbits contains those elements of the form a ⊗ b̄, for some

a, b ∈ C
m. If we identify C

2n and H
n, then there is a map from the highest root

orbit of su(2n,C) to sp(n,C) ∼= S2
C

2n given by a⊗ b̄ 7→ a∨jb. Generically, this map

has kernel Z2. Its image consists of all elements of the form e∨ f , where e, f ∈ C
2n

and, if ω is the symplectic form, then ω(e, f) = 0. One of the consequences of the

results of Springer & Steinberg (1970) is that the nilpotent orbits of sp(n,C) are

obtained as the intersection of sp(n,C) with the nilpotent orbits of sl(2n,C). Thus
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studying the Jordan forms of elements shows that the image splits as a disjoint

union of two orbits, one is the highest root orbit of sp(n,C) and the other is an

orbit of sp(n,C) of dimension 8n− 4.

On the level of quaternionic Kähler manifolds, the Z2-action is the action of j

on Gr2(C
2n), where C2n ∼= H

n; so the fixed point set is HP(n−1) and the incomplete

manifold obtained is Gr2(C
2n) \HP(n− 1)

/
Z2.

ii) The Lie algebra of so(q) is Λ2
C
q, so there is map from so(q + 1) to so(q)

induced by projection. In particular,




0 0 . . . 0 1 i

0 0 . . . 0 −i 1
...

...
...

...
...

−1 i . . . 0 0 0

−i −1 . . . 0 0 0




7−→




0 0 . . . 0 1

0 0 . . . 0 −i
...

...
...

...

−1 i . . . 0 0



.

The first matrix is an element of the highest root orbit of so(q+1) and its image is a

nilpotent matrix in so(q) which lies in an orbit of dimension 4q−8 (using the results

of Springer & Steinberg, 1970). Away from the highest root orbit of so(q) this map

has kernel Z2. The quaternionic manifold obtained is G̃r4(R
q+1) \ G̃r4(R

q)
/
Z2,

where Z2 acts on R
q+1 = R

q ⊕ R as (1,−1). Note that the nilpotent elements

obtained are those which may be written in the form a ∧ b, with g(a, a) = 0 =

g(a, b), since the highest root orbit of so(q + 1,C) consists of elements c ∧ d, with

g(c, c) = g(d, d) = 0 = g(c, d). �

Our final model for a quaternionic Kähler 8-manifold is the regular orbit

of SU(3). Now su(3) is a subalgebra of g2: let (0, 1) be the highest root of gC2

and suppose (1, 0) is a short root such that the long roots of g2 are ±(0, 1), ±(3, 2),
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±(3, 1), and the short roots are ±(1, 0), ±(1, 1), ±(2, 1); then su(3,C) is the subal-

gebra generated by the long roots. The Lie algebra gC2 decomposes under the action

of SU(3) as

gC2 = su(3,C)⊕ Λ1,0
C

3 ⊕ Λ0,1
C

3.

The space G2/SU(3) is 3-symmetric; the symmetry σ comes from the centre Z3

of SU(3) and acts on this decomposition of gC2 as (1, e2πi/3, e−2πi/3). The projec-

tion of the highest root orbit of gC2 contains elements of both the nilpotent orbits

of su(3,C) and so counting dimensions, the image must be the whole nilpotent va-

riety of su(3,C). To show that both orbits meet the image, we argue as follows. We

have a subgroup SO(4) = Sp(1)+ Sp(1)− of G2 and Salamon (1987) shows that the

Lie algebra gC2 decomposes under SO(4) as

gC2 = S2V+ ⊕ S2V− ⊕ V+S3V−.

If we take sp(1)+ to be the span of E(0,1), H(0,1), E−(0,1), where Hα, Eλ is a Cartan

basis for gC2 , then sp(1)− is spanned by E(2,1), H(2,1), E−(2,1) and the remaining roots

span V+S
3V−. Now, for definiteness, identify E(0,1) and E(3,1) with the matrices




0 1 0

0 0 0

0 0 0


 and




0 0 0

0 0 1

0 0 0


. This gives [E(0,1), E(3,1)] = E(3,2) is




0 0 1

0 0 0

0 0 0




and so E(0,1) + E(3,2) is a highest root vector of su(3) and hence of g2. Consider

the orbit of this element under Sp(1)−. The first component lies in sp(1)+ so it is

Sp(1)−-invariant. The other component lies in the Sp(1)−-module S3V− spanned

by E(3,2), E(1,1), E(−1,0), E(−3,−1). In particular, there is an element in the Sp(1)−-

orbit of E(0,1) + E(3,2) which projects to E(0,1) + aE(3,2) + bE(−3,−1) with both a

and b non-zero. Now this element lies in the regular orbit of su(3,C) and is the

projection of a highest root element of gC2 , as required.
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Quaternionically, we obtain the following. Let 1, i, j, k, e, ie, je, ke be a basis

of O, then the Wolf space G2/SO(4) is the space of quaternionic lines in O. The

action of σ ∈ Z3 on O is by right multiplication by e2πe/3 = − 1
2 +

√
3
2 e. This is an

element of G2, since

(σi)(σj) =
k

4
−
√
3

4
(ie)j −

√
3

4
i(je) +

3

4
(ie)(je) = −k

2
+

√
3

2
(ke) = σ(k)

and σ(i)σ(e) =

(
− i
2
+

√
3

2
ie

)
e = − ie

2
−
√
3

2
i = σ(ie).

The fixed point set of σ consists of those quaternionic lines which are spanned by

1, e and a complex line in C
3 = 〈i, j, k, ie, je, ke〉, which is isomorphic to CP(2).

Proposition 4.4.2. There is an open set in the highest root orbit of gC2

which is a three-fold cover of the regular orbit in su(3,C). The quaternionic

Kähler manifold associated to this su(3)-orbit is G2 \ CP(2)/Z3. �

Thus we have the following models for eight-manifolds:

HP(2), Gr2(C
4),

G2

SO(4)
, U(CP(2)),

HP(2) \ 3HP(1)

Z2 × Z2
,

Gr2(C
4) \HP(1)

Z2
and

G2/SO(4) \ CP(2)
Z3

.

These are exactly the models for quaternionic Kähler 8-manifolds with positive

scalar curvature obtained by Poon & Salamon (1989), who showed that the only

such complete 8-manifolds are the Wolf spaces.

Higher-dimensional Quotients. The hyperKähler quotients of HP(n − 1) by

U(1) and Sp(1) described by Galicki may be understood in terms of Lie algebras
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as follows. The normaliser of U(1) in Sp(n) is U(n). Let v be an element of Hn.

Corresponding to H
n = Λ1,0

C
n ⊕ Λ0,1

C
n = C

n ⊕ Cn, write v = a+ b̄. Now

sp(n,C) = S2
C

2n = u(n,C)⊕m = Λ1,1 ⊕ (S2,0 ⊕ S0,2),

and, correspondingly, we have

v2 = a⊗ b̄+ (a2 + b̄2).

The orbit of a ⊗ b̄ ∈ gl(n,C) = u(n,C) is 4(n − 1)-dimensional and these orbits

are parameterised by Tr(a ⊗ b̄) = g(a, b̄). So the image of v2 7→ a ⊗ b̄ is (4n −

2)-dimensional. Restricting to nilpotent elements in the image is equivalent to

imposing the condition g(a, b̄) = 0 and we obtain the highest root orbit of su(n,C) ⊂

u(n,C). Thus, g(a, b̄), which is the component of v2 in u(1,C) ⊂ u(n,C), gives the

complex moment map. Similarly, the normaliser of Sp(1) in Sp(n) is SO(n). The

Lie algebra splits as

sp(n) = so(n,C)⊕ sp(1,C)⊗ (S2
0R+ R)

and the projection to sp(1,C) gives the complex moment map. This enables us to

give another description of the orbit of so(q,C) discussed above. Consider Cq+2 =

C
q + C

2. Then, as before, the map from the highest root orbit of so(q + 2,C)

to so(q,C) induced by projection onto C
q, contains the highest root orbit and an

orbit of dimension 4q−8. A typical element of the highest root orbit of so(q+2,C) is

a∧b = (aq, a2)∧ (bq, b2), where g(a, a) = g(b, b) = 0 = g(a, b). Regarding projection

to Λ2
C

2 ∼= so(2,C) as a complex moment map for the action of U(1) = SO(2), any

zero of this map in the highest root orbit may be put in the form (aq, a2) ∧ (bq, 0)

and so the U(1)-quotient consists precisely of the two orbits above. Thus, the

quaternionic Kähler quotient of G̃r4(R
q+2) by U(1) acting on the R2-factor as SO(2)

is G̃r4(R
q+1)/Z2.
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The Algebra g2. One might hope to describe the 16-dimensional orbit of gC2 in

terms of the highest root orbit of so(7). Recall that SO(8)/G2 is a 3-symmetric

space. Let ψ1, . . . , ψ4 be a set of simple roots for so(8).

ψ1

•
ψ2

•

•
ψ4

ψ3

•

Let hψi
, eλ be the corresponding Weyl basis for so(8,C). The description of the

inclusion of g2 in so(7) given by Gray & Wolf (1968) is as follows. Define

a± = e±ψ1 + e±ψ3 + e±ψ4

b± = e±(ψ1+ψ2) + e±(ψ3+ψ2) + e±(ψ4+ψ2)

c± = e±(ψ1+ψ3+ψ2) + e±(ψ3+ψ4+ψ2) + e±(ψ4+ψ1+ψ2)

and if α = α1+α2+α3, let ε = e2πi/3, α′ = α1+εα2+ε
2α3 and α

′′ = α1+ε
2α2+εα3.

Then

gC2 = 〈hψ1 + hψ3 + hψ4 , hψ2 , e±ψ2 , e±(ψ1+ψ2+ψ3+ψ4), e±(ψ1+2ψ2+ψ3+ψ4), a±, b±, c±〉.

Also, if we define

g2(ε) = 〈hψ1 + ε2hψ3 + εhψ4 , a
′′
±, b

′′
±, c

′′
±〉

g2(ε
2) = 〈hψ1 + εhψ3 + ε2hψ4 , a

′
±, b

′
±, c

′
±〉

then

so(8) = g2 ⊕ g2(ε)⊕ g2(ε
2),
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and

so(7) = g2 ⊕ R
7,

where

R
7 = 〈 12 (hψ3 + hψ4),

1√
2
(e±ψ3 + e±ψ4),

1√
2
(e±(ψ3+ψ2) + e±(ψ4+ψ2)),

1√
2
(e±(ψ1+ψ4+ψ2) + e±(ψ1+ψ3+ψ2))〉.

The inclusion g2 →֒ so(7) induces a projection so(7)→ g2 via the dual map and the

Killing forms. Levasseur & Smith (1988) show that the image of highest root orbit

contains the orbit of short roots (which contains eψ2), which is the 16 dimensional

orbit we are interested in, and that this map is a bijection on the closures of these

orbits. They also show that the 20-dimensional orbit arises in the image of the

highest root orbit of so(8).

The above links between nilpotent orbits in low dimensions are summarised in

Diagram 1.

Singularities in the Nilpotent Variety. The nilpotent orbits of a simple Lie

algebra gC may be partially ordered by O1 ≺ O2 if and only if O1 ⊂ O2. Diagrams

showing this partial order for the exceptional groups and for some of the smaller

classical groups may be found in Carter (1985). The nilpotent variety of gC contains

a unique open dense orbit, the regular orbit, and a unique orbit of codimension 4,

the subregular orbit. If ρ and ρ′ are homomorphisms su(2) → g corresponding to

the regular and subregular orbits respectively, then Slodowy (1980) defines a slice S

transverse to the subregular orbit by taking S to be the intersection of S(ρ′) with

the nilpotent variety. Here S(ρ′) = ρ′

(
0 1

0 0

)
+ zρ′

(
0 0

1 0

)
, where z denotes the

centraliser in gC. The transverse slice S is biholomorphic to C
2/Γ, where Γ is a

finite subgroup of SU(2) (that is, Γ is either cyclic, dihedral of order 4r for some r,
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Diagram 1

HyperKähler Quotients of Small Nilpotent Orbits

Arrows are labelled by the group and the quotient is the closure of the indicated orbit.
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binary tetrahedral, binary octahedral or binary icosahedral). This was conjectured

by Grothendieck and proved by Brieskorn (1970). Kronheimer (1988) shows that

this slice is actually hypercomplex. This result was extended by Kraft & Procesi

(1982) in the case of classical groups.

Proposition 4.4.3. If g is a classical simple Lie algebra, then for a min-

imal degeneration (that is, if the two orbits considered are adjacent in the

partial order) the singularity obtained is either of the form described above

(i.e. C
2/Γ), or two copies of C2/Zk, for some k, or the transverse slice is

smoothly equivalent to a highest root orbit for some simple, complex Lie

algebra. �

This result was also proved in the case of G2 by Kraft (1988) and indicates

that a quaternionic description of these singularities should be possible.

Bundles Over Real Orbits. The second section of this chapter gives an explicit

description of the normal bundle of G/N(Sp(1)) in the quaternionic Kähler mani-

fold associated to the corresponding nilpotent orbit. One could try and construct

quaternionic Kähler metrics on these bundles, perhaps using the type of techniques

seen in Chapter 2. For the regular orbit in su(3), the bundle is S2 and the tangent

space of this bundle splits as S4 + S2 under the action of Sp(1). The closure of

this bundle in F contains the Wolf space CP(2) and we have already seen that

adding this space to a triple cover of the bundle gives the quaternionic Kähler

manifold G2/SO(4).

Similarly, the orbit of short roots in gC2 is a bundle over G2/SO(4) whose

tangent space splits as 2S3 + 2S1. This time the closure contains another copy

of G2/SO(4) (this comes from the orbit of the long roots) and the completed mani-

fold is G̃r4(R
7). Regarding this manifold as G̃r3(R

7), it is natural to conjecture that
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1√
2
ψ coincides with the standard G2-calibration on G̃r3(R

7) (see the discussion of

exceptional geometries in the next chapter for the definition of this calibration). The

two copies of G2/SO(4) would then consist of the associative and anti-associative

3-planes in R
7 ∼= ImO.

One might hope to use this type of procedure to construct other complete

quaternionic Kähler manifolds which may not be Wolf spaces. For example, we

have not yet given a description of the quaternionic Kähler manifold associated to

the regular orbit of sp(2,C). This is the bundle S4 over SO(5)/SO(3) and the

closure is obtained by adjoining Gr2(C
4)/Z2. It is natural to ask whether there

is a complete 12-dimensional quaternionic Kähler manifold with an open subset

covering this manifold.



Chapter 5

DIFFERENTIAL FORMS

This chapter is more in the nature of an appendix. The main purpose is

to show that a quaternion-Hermitian manifold, of dimension at least 12, with a

closed fundamental 4-form is quaternionic Kähler. (This result was announced in

Swann, 1989.) The proof uses various techniques from representation theory which

are discussed in the first section of this chapter whilst decomposing part of the

exterior algebra of a quaternion-Hermitian manifold. Any notions not defined there

may be found in Bröcker & tom Dieck (1985). The main result is then proved in

the second section and the last section is devoted to discussion of related topics in

exceptional Riemannian geometry.

5.1 Representation Theory and Exterior Algebras

Recall that a quaternion-Hermitian manifold M is a 4n-manifold with structure

group Sp(n) Sp(1). As remarked in Chapter 2, we may associate a bundle over M

to each representation of Sp(n) Sp(1). In particular, TCM is the bundle E⊗H, where

E and H are the basic representations of Sp(n) and Sp(1), respectively, described

in Chapter 2. Now Sp(n) Sp(1) is a subgroup of SO(4n), in fact, Gray (1969)

shows that it is a maximal subgroup if n > 1 (if n = 1, then Sp(1) Sp(1) =

SO(4)). Thus, by restriction, any SO(4n)-module decomposes as a direct sum

of irreducible Sp(n) Sp(1)-modules. In particular, Λp
C
T ∗M decomposes under the

action of Sp(n) Sp(1). The Sp(n) Sp(1)-modules are the Sp(n)× Sp(1)-modules in

108
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which (−1,−1)-acts as the identity. Any irreducible Sp(n) × Sp(1)-module is just

a tensor product of an irreducible Sp(n)-module and an irreducible Sp(1)-module.

The irreducible representations of Sp(1) ∼= SU(2) are the symmetric powers SrH of

the basic Sp(1)-module H.

The irreducible Sp(n)-modules are determined by their dominant weights λ =

(λ1, . . . , λn), where λi are positive integers with λ1 > λ2 > · · · > λn (see Bröcker

& tom Dieck, 1985). We write V (... ) for the irreducible Sp(n)-module of dominant

weight (. . . ). In particular, we have

V (r0... ) ∼= SrE,

V (1...10... ) ∼= Λr0E,

where (1 . . . 10 . . . ) has r ones and Λr0E is the Sp(n)-invariant complement to the

subspace {ω}Λr−2E of ΛrE, where ω is the symplectic form preserved by Sp(n).

We will also write K for V (210... ) which is a submodule of E ⊗ Λ2
0E
∼= K ⊕ E.

The Weyl group W of Sp(n) is Z2 ≀Sn and this acts on weights λ by permuting

entries and flipping signs of entries. The weights of Sp(n) can be partially ordered

as follows: for each weight γ there is an element w of W such that λ = wγ has

entries λi satisfying λ1 > λ2 > · · · > λn > 0; now γ 4 γ′ if for the corresponding λ

and λ′ we have λi 6 λ
′
i for all i. To calculate the character of the Sp(n)-module of

dominant weight λ we use the following result.

Proposition 5.1.1. (Kostant) Let W be an irreducible representation of

a compact Lie group G with dominant weight λ and suppose λ′ ≺ λ. Then

the multiplicity m(λ′, λ) of λ′ as a weight of W is given by

m(λ′, λ) = −
∑

w∈W\{1}
det(w) m(λ′ + ̺− w(̺), λ),
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where ̺ is half the sum of the positive roots. �

For Sp(n) the element ̺ is (n, n−1, . . . , 1). The results of some of these calculations

will be given in Table 2.

Theorem 5.1.2. On a quaternion-Hermitian manifoldM of dimension 4n

we have

T ∗
CM
∼= E ⊗H,

Λ2
CT

∗M ∼= Λ2
0E ⊗ S2H + S2H + S2E.

If M has dimension at least 8, then

Λ3
CT

∗M ∼= (Λ3
0E + E)⊗ S3H + (V (21) + E)⊗H,

Λ4
CT

∗M ∼= (Λ4
0E + Λ2

0E + R)⊗ S4H + (V (211) + S2E + Λ2
0E)⊗ S2H

+ V (22) + Λ2
0E + R.

Also,

Λ5
CT

∗M ∼=





(Λ5
0E + Λ3

0E + E)⊗ S5H

+(V (2111) + V (21) + Λ3
0E + E)⊗ S3H

+(V (221) + V (21) + Λ3
0E + E)⊗H if dimM > 12,

E ⊗ S3H + (V (21) + E)⊗H if dimM = 8.

(Here any module of length greater than n is to be regarded as the zero-

module {0} and R denotes C together with a real structure.)

Proof. The decompositions upto Λ4 have been given by Salamon (1989), so we

will concentrate on the decomposition of Λ5.



5.1 Representation Theory and Exterior Algebras 111

We will take n > 5 to avoid special cases, but the results of the corresponding

calculations in those other cases will be included in Table 2.

We compute with characters. During this proof, m runs over {1, 2, . . . , n} and

α, β, γ, δ, ǫ run over {±1,±2, . . . ,±n}. Let t = diag(eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn),

t′ = diag(eiθ, e−iθ) be diagonal matrices representing typical elements of the maxi-

mal tori of Sp(n) and Sp(1) respectively. Let χV denote the character of V . Then

χΛp

C
T∗M (t⊗ t′) = σp(e

±iθm±iθ),

where σp is the pth elementary symmetric polynomial (see Adams, 1967). This

immediately gives the decomposition of Bonan (1982)

ΛrCT
∗M ∼= ΛrESrH ⊕

⊕

16s6[ r2 ]

V rs S
r−2sH,

where V rs is are Sp(n)-modules. In particular, this gives

Λ5
CT

∗M ∼= Λ5ES5H + V1S
3H + V2H.

If we write θ−a = −θa, then explicitly we have

χΛ5
C
T∗M (t⊗ t′) =

∑

α<β<γ<δ<ǫ

ei(θα+θβ+θγ+θδ+θǫ)

×
{
e5iθ + e−5iθ + 5(e3iθ + e−3iθ) + 10(eiθ + e−iθ)

}

+
∑

γ<δ<ǫ
γ,δ,ǫ 6=β

ei(2θβ+θγ+θδ+θǫ)
{
e3iθ + e−3iθ + 3(eiθ + e−iθ)

}

+
∑

β<γ
β,γ 6=ǫ

ei(2θβ+2θγ+θǫ)
{
eiθ + e−iθ

}
.
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The character of SrH is χSrH(t) =
r∑
j=0

ei(r−2j)θ, so

χV1(t⊗ t′) =
∑

γ<δ<ǫ
γ,δ,ǫ 6=β

ei(2θβ+θγ+θδ+θǫ) + 4
∑

α<β<γ<δ<ǫ

ei(θα+θβ+θγ+θδ+θǫ)

χV2(t⊗ t′) =
∑

β<γ
β,γ 6=ǫ

ei(2θβ+2θγ+θǫ) + 2
∑

γ<δ<ǫ
γ,δ,ǫ 6=β

ei(2θβ+θγ+θδ+θǫ)

+ 5
∑

α<β<γ<δ<ǫ

ei(θα+θβ+θγ+θδ+θǫ)

We introduce the following notation

(a1 a2 a3 . . . ) =
∑

α1,α2,α3,... distinct
αj<αk if aj=ak and j<k

ei(±a1θα1±a2θα2±a3θα3±··· ).

The multiplicities with which (a1 a2 a3 . . . ) occur in the above expressions for χVi

are the multiplicities with which the weight (a1, a2, a3, . . . , 0, . . . , 0) occurs in the

modules Vi. Rearranging those expressions gives

∑

α<β<γ<δ<ǫ

ei(θα+θβ+θγ+θδ+θǫ) = (11111) + (n− 3) (111) +
1

2
(n− 1)(n− 2) (1)

∑

γ<δ<ǫ
γ,δ,ǫ 6=β

ei(2θβ+θγ+θδ+θǫ) = (2111) + 3 (111) + (n− 2) (21) + (n− 1) (1)

∑

β<γ
β,γ 6=ǫ

ei(2θβ+2θγ+θǫ) = (221) + (21) + (n− 1) (1).

So we obtain the multiplicities given in Table 2 and the decompositions claimed

above. �
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Weight
(221) (2111) (11111) (21) (111) (1)

V1 n > 5 1 4 n− 2 4n− 9 (n− 1)(2n− 3)
n = 4 1 2 7 15
n = 3 1 3 6
n = 2 1

V2 n > 5 1 2 5 2n− 3 5n− 9 1
2 (n− 1)(5n− 4)

n = 4 1 2 5 11 24
n = 3 1 3 6 11
n = 2 1 3

V (221) n > 5 1 2 5 2(n− 2) 5n− 12 5
2 (n− 1)(n− 2)

n = 4 1 2 4 8 15
n = 3 1 2 3 5

V (2111) n > 5 1 4 n− 3 4(n− 3) 2(n− 3)(n− 1)
n = 4 1 1 4 5

K n > 3 1 2 2(n− 1)
n = 2 1 2

Λ3
0E n > 3 1 n− 2

E n > 1 1

Table 2.

Multiplicities of weights in Sp(n)-representations.

If M is a quaternion-Hermitian 8-manifold then the Hodge ∗-operator splits

Λ4
C
T ∗M into its ±1-eigenspaces Λ4

±. These decompose as

Λ4
+
∼= R+ S4H + Λ2

0E ⊗ S2H + V (22),

Λ4
− ∼= Λ2

0E + S2E ⊗ S2H.
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5.2 The Fundamental 4-Form

For a quaternion-Hermitian manifoldM4n (n > 1), SO(4n) acts on the fundamental

4-form Ω with stabiliser the maximal subgroup Sp(n) Sp(1). Differentiation gives a

map so(4n) → Λ4 whose kernel is sp(n) ⊕ sp(1). We thus have an inclusion of the

orthogonal complement of sp(n)⊕ sp(1) in so(4n),

(sp(n)⊕ sp(1))
⊥

so (4n) →֒ Λ4T ∗M.

Proposition 5.2.1. If ∇ is the Levi-Civita connection and X ∈ TxM ,

then

∇XΩ ∈ (sp(n)⊕ sp(1))
⊥ ∼= Λ2

0ES
2H.

Proof. Let ∇̃ be an Sp(n) Sp(1)-connection, not necessarily torsion-free. If we

let ξX = ∇X − ∇̃X , then ξX is a tensor which is zero on functions and such that

ξXΩ = ∇XΩ. But ξX is in so(4n), since the holonomy group of M is a subgroup

of SO(4n), so ∇XΩ lies in (sp(n)⊕ sp(1))
⊥
.

Now

so(4n) ∼= Λ2T ∗M ∼= S2E ⊕ S2H ⊕ Λ2
0ES

2H

∼= sp(n)⊕ sp(1)⊕ Λ2
0ES

2H.

So (sp(n)⊕ sp(1))
⊥ ∼= Λ2

0ES
2H. �

From this it follows that ∇Ω ∈ T ∗ ⊗ Λ2
0ES

2H.
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Proposition 5.2.2. On a quaternion-Hermitian manifold of dimension at

least 8,

∇Ω ∈ (K + Λ3
0E + E)⊗ (S3H +H).

(On an 8-manifold, Λ3
0E = {0}.) �

Notice that each of these six terms appears in the decomposition of Λ5T ∗M

when dimM > 12, but that KS3H is absent from this decomposition for an 8-

manifold.

Since ∇ is the Levi-Civita connection, dΩ = a∇Ω, where a is the alternation

map T ∗ ⊗ Λ4T ∗ → Λ5T ∗. Now, by Schur’s Lemma, when dimM > 12, to show

that dΩ determines ∇Ω it is sufficient to check that a is non-zero on each of the six

components above.

Theorem 5.2.3. If M is a quaternion-Hermitian manifold of dimension

at least 12, then dΩ determines ∇Ω. In particular, dΩ = 0 implies ∇Ω = 0

and that M is quaternionic Kähler.

Proof. Let e1, . . . , en, ẽ1, . . . , ẽn be a basis for E, h, h̃ a basis of H such that

ẽi = jei and h̃ = jh. Consider

α12 = e1h ∧ e2h ∧
n∑

i=1

eih̃ ∧ ẽih̃− e1h̃ ∧ e2h̃ ∧
n∑

i=1

eih ∧ ẽih.

The symplectic form on E is given by
n∑
i=1

eiẽi − ẽiei, so contracting with the sym-

plectic form on the E-components of the third and fourth terms gives

e1 ∧ e2(hhh̃h̃− h̃h̃hh) ∈ Λ2
0E ⊗ Λ2S2H ∼= Λ2

0ES
2H.
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So α12 ∈ Λ2
0ES

2H. Now

a(e3h⊗ α12) = (e3e1e2 − e3e2e1)hh̃h+ (e2e3e1 − e1e3e2)h̃hh+ e1 ∧ e2 ∧ e3hhh̃

having applied the contraction above and contracting the third and fifth H-com-

ponents. But this has non-zero components in KS3H, KH, Λ3
0ES

3H and Λ3
0EH.

To get components in E(S3H +H), consider

a

( n∑

i=1

ẽih⊗
n∑

j=1

αj2

)
,

where αj2 is defined in the same way as α12, but with e1 replaced by ej .

Thus a is non-zero on all six components, as required. �

Because all the representations above were complex we see that the above

theorem also holds for pseudo-quaternion-Hermitian manifolds.

Corollary 5.2.4. If M is a pseudo-quaternion-Hermitian manifold of di-

mension at least 12, then dΩ determines ∇Ω. �

A natural question after the above results is whether there are any complete

8-dimensional (pseudo-) quaternion-Hermitian manifolds for which dΩ vanishes but

∇Ω is non-zero. These conditions imply that ∇Ω lies in KS3H. This question

has an analogue in symplectic geometry where one looks for manifolds which are

symplectic but not Kähler. Compact examples of such symplectic manifolds were

first obtained by Thurston (1976) whose methods were generalised by Cordero et

al. (1985a, b, 1986) and by Fernández & Gray (1985). Simply-connected examples

have been produced by McDuff (1984).

The decomposition of ∇Ω in Proposition 5.2.2 can be used to study various

types of quaternion-Hermitian manifolds. For example, the components of ∇Ω in
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(K + Λ3
0E) ⊗ (S3H + H) vanish if and only if the algebraic ideal generated by

the subbundle G of Λ2T ∗M is a differential ideal. This is because the covariant

derivative of a section α of G lies in

G ∧ T ∗M ∼= ES3H ⊕ EH

modulo terms arising from ∇Ω ⊗ α. Combining this with the theorem above we

have.

Proposition 5.2.5. A pseudo-quaternion-Hermitian 8-manifold is pseudo-

quaternionic Kähler if and only if the fundamental 4-form is closed and

the algebraic ideal generated by G is a differential ideal. �

Note that the discussion in Chapter 2 gives examples of complete quaternion-

Hermitian metrics (on H) for which the differential ideal condition is satisfied but

which are not quaternionic Kähler. A variation of the above argument shows that

the components of ∇Ω involving S3H all vanish if and only if M is quaternionic in

the sense defined in Chapter 1. The metrics of Chapter 2 satisfying the differential

ideal condition, all lie in the same quaternionic structure and so have ∇Ω in the

module EH.

5.3 Relationship to Exceptional Geometries

From the point of view of holonomy classification there are two exceptional Rie-

mannian geometries which occur on non-homogeneous manifolds. The first of these

has holonomy in G2 ⊂ SO(7). Let e1, . . . , e7 be an orthonormal dual basis for R7.

The group G2 is then characterised as the stabiliser in GL(7,R) of the 3-form

ϕ = e1e2e5 − e3e4e5 + e1e3e6 − e4e2e6 + e1e4e7 − e2e3e7 + e5e6e7.
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The other group that occurs is Spin(7) ⊂ SO(8). Again this is may be charac-

terised as follows: if we extend the dual basis ei to R
8 then Spin(7) is the stabiliser

in GL(8,R) of the 4-form

ψ = e1e2e5e8 − e3e4e5e8 + e1e3e6e8 − e4e2e6e8 + e1e4e7e8 − e2e3e7e8 + e5e6e7e8

+ e1e2e3e4 − e1e2e6e7 + e3e4e6e7 − e1e3e7e5 + e4e2e7e5 − e1e4e5e6 + e2e3e5e6

= ϕ ∧ e8 + ∗7ϕ.

For comparison, the form preserved by Sp(2) is

Ω = ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK

= 3(e1e2e3e4+ e5e6e7e8) + e1e2e5e6 + e1e2e7e8 + e3e4e5e6 + e3e4e7e8 + e1e3e5e7

+ e1e3e8e6 + e4e2e5e7 + e4e2e8e6 + e1e4e5e8 + e1e4e6e7 + e2e3e5e8 + e2e3e6e7.

If the sign in front of ωK ∧ ωK is changed, then the new 4-form obtained is ψ but

with e8 7→ e7 7→ e6 7→ e5 7→ e4 7→ e3 7→ e2 7→ e1 7→ −e8. This fact was first observed

by Bryant & Harvey (1989) and reflects the inclusion Sp(2) ⊂ Spin(7).

The forms ϕ, ψ and Ω are non-degenerate in the sense that they cannot be

written as a smaller sum of indecomposables than the expressions above. Thus,

7 indecomposable 3-forms are required for ϕ and 14 indecomposable 4-forms are

required for ψ and Ω. In fact, they are maximally non-degenerate, in that no other

forms of the same degree can require more indecomposable summands. This can be

shown as follows. LetM(r, n) be an upper bound for the number of indecomposables

required for an element of ΛrRn. If α ∈ ΛrRn and e1 ∈ Λ1
R
n then, upto constants,

α = e1 ∧ (e1yα) + e1y(e1 ∧ α).
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So M(r, n) 6M(r− 1, n− 1)+M(n− r− 1, n− 1), since ∗(e1 ∧α) ∈ Λn−r−1
R
n−1.

Also, by Hodge ∗-duality, M(r, n) = M(n − r, n). Putting M(0, n) = M(1, n) = 1

and M(2, n) =
[
n
2

]
we obtain the following bounds

n\r 0 1 2 3 4

1 1 1

2 1 1 1

3 1 1 1 1

4 1 1 2 1 1

5 1 1 2 2 1

6 1 1 3 4 3

7 1 1 3 7 7

8 1 1 4 10 14

as claimed.

Classification of manifolds with structure group either G2 or Spin(7) has been

carried out by Fernández (1986) and Fernández & Gray (1982). Various metrics with

exceptional holonomy have been produced by Bryant (1984, 1987), Salamon (1987)

and Bryant & Salamon (1989). We can reproduce one of their Spin(7) metrics using

the techniques of Chapter 2. Recall that in the proof of the existence of quaternionic

Kähler manifolds we derived the equations for closure of the 4-form

Ξ = A(α∧ ᾱ∧ α∧ ᾱ) +B(α∧ ᾱ∧ xθ̄t∧ θx̄+ xθ̄t∧ θx̄∧ α∧ ᾱ) +Cr4(θ̄t∧ θ ∧ θ̄t∧ θ).

We showed that this was closed if and only if

−3c

r2
A+

3

r2
B +B′ = 0
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and

−2c

r2
B +

2

r2
C + C ′ = 0.

If we put A = f2, B = 3fg and C = g2 then Ξ is the type of 4-form defining a

Spin(7)-structure. Bryant now tells us that if we show Ξ is closed then we have a

metric with holonomy in Spin(7).

Theorem 5.3.1. The bundle H/Z2 over a self-dual Einstein 4-manifold

carries a metric of holonomy Spin(7) with 4-form

(r2)−8/5

(
q2

25c2
(pr2 + q)

−4/5
(α ∧ ᾱ ∧ α ∧ ᾱ)

− 3q

5c
(pr2 + q)

1/5
(α ∧ ᾱ ∧ xθ̄t ∧ θx̄+ xθ̄t ∧ θx̄ ∧ α ∧ ᾱ)

+ (pr2 + q)
6/5

(xθ̄t ∧ θx̄ ∧ xθ̄t ∧ θx̄)
)
.

There is a similar result that shows that the holonomy is contained in G2 if

dϕ = 0 = d∗ϕ, which is used to construct metrics with holonomy G2 on Λ2
− of a

self-dual Einstein 4-manifold.

A common feature of the metrics obtained via these bundle constructions is

that they admit an R-action. Let the closed differential form associated to the

geometry in question be α. Then if X is the vector field generated by this action,

we have LXα = α. This implies

α = LXα = Xydα+ d(Xyα) = d(Xyα),

and so α is exact.

The 4-form 1
3Ω on a quaternionic Kähler manifold M4n is a example of a

calibration, that is, for any oriented orthonormal set e1, . . . , e4 of TxM we have
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| 13Ω(e1, e2, e3, e4)| 6 1 (see Harvey & Lawson, 1982, and Harvey, 1989). Dadok et

al. (1988) have classified all self-dual, constant coefficient calibrations on R
8 and a

natural question that arises is which submanifolds they determine. Submanifolds

of quaternionic Kähler manifolds are rare; Gray (1969) showed that a quaternionic

submanifold of any quaternionic Kähler manifold is necessarily totally geodesic.

However, one can look for submanifolds M of a quaternionic Kähler manifold for

which the pull-back of the fundamental 4-form has the correct algebraic type (at

least if dimM > 12). For example, the existence of such quaternionic Kähler

deformations (Mt,Ωt) of a flat subspaceM0 = H
n of Hm can in principle be tackled

by Cartan-Kähler theory. Observe that in the decomposition

Λ4T ∗M = R⊕ Λ2
0ES

2H ⊕ Λ2
0E ⊕ S2ES2H ⊕W,

the first four summands constitute the gl(4n,R)-orbit of Ω, so the first order equa-

tions of deformation are determined by the condition that Ω̇ = dΩ
dt

∣∣
t=0

have zero

component in W .
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nionique, C. R. Acad. Sc. Paris, 295, 115–118; 1983, 296, 601–602.

Brieskorn, E., 1970, Singular Elements of Semisimple Algebraic Groups, in “Actes
Congrès Intern. Math.,” Nice, t. 2, Gauthier-Villars, Paris, 279–284.

Brinkman, H.W., 1925, Einstein Spaces Which are Mapped Conformally on Each

Other, Math. Ann., 94, 119–145.
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