Torus actions and Ricci-flat metrics

Andrew Swann

Department of Mathematics, University of Aarhus

November 2016 / Trondheim

To Eldar Straume on his 70th birthday

http://mscand.dk

https://doi.org/10.7146/math.scand.a-12294

Outline

2 HyperKähler Manifolds Dimension four Toric hyperKähler

THE DELZANT PICTURE

 (M^{2n}, ω) symplectic with a *Hamiltonian* action of $T^n \implies$ The moment map $\mu: M \to \mathbb{R}^n \cong \mathfrak{t}$ identifies the orbit space

 M/T^n with a convex polytope in \mathbb{R}^n .

Each such (M^{2n}, ω) may be constructed as a symplectic quotient of \mathbb{R}^{2m} by an Abelian subgroup of T^m .

Symplectic moment maps

Let (M, ω) be symplectic: $d\omega = 0$. If $X \in \mathfrak{X}(M)$ preserves ω , then Cartan's formula gives

$$0=L_X\omega=d(X\,\lrcorner\,\omega),$$

so (locally) $X \lrcorner \omega = d\mu^X$ for some $\mu^X \colon M \to \mathbb{R}$. For *G* Abelian acting on *M* preserving ω , the action is *Hamiltonian* if there is a *G*-invariant map

$$\mu \colon M \to \mathfrak{g}^*$$

such that $d\langle \mu, X \rangle = X \,\lrcorner\, \omega$ for each $X \in \mathfrak{g}$. *M* simply-connected and *G* connected Abelian \implies Hamiltonian \iff all orbits are *isotropic*

$$\omega(X, Y) = 0$$
 for all $X, Y \in \mathfrak{g}$.

The Delzant polytope

Faces of $\Delta = \mu(M)$ are of the form $F_k = \{ \langle \mu, u_k \rangle = \lambda_k \}$ and the Delzant polytope is

$$\Delta = \{a \in \mathbb{R}^n \mid \langle a, u_k \rangle \leqslant \lambda_k \; \forall k \}.$$

 $u_k \in \mathbb{R}^n$ with points over $(F_k)^\circ$ having stabiliser the subtorus with Lie algebra $\{v \in \mathbb{R}^n = \mathfrak{t} \mid \langle v, u_k \rangle = 0\}$, so $u_k \in \mathbb{Q}^n$.

Smoothness of *M* is equivalent to: $F_{k_1} \cap \cdots \cap F_{k_r} \neq \emptyset \implies$ the corresponding u_{k_1}, \ldots, u_{k_r} are part of a \mathbb{Z} -basis.

This restricts the possible u_i 's locally.

HyperKähler manifolds

 $(M, \omega_I, \omega_J, \omega_K)$ is *hyperKähler* if:

- **1** each ω_A is a symplectic two-form,
- 2 the tangent bundle endomorphisms $I = \omega_K^{-1} \omega_J$, etc., satisfy

•
$$I^2 = -1 = J^2 = K^2$$
, $IJ = K = -JI$, etc., and

• $g = -\omega_A(A \cdot, \cdot)$ is independent of *A* and positive definite.

Consequences

- dim M = 4n,
- *g* is Ricci-flat, with holonomy contained in $Sp(n) \leq SU(2n)$.

Symmetry considerations

Ricci-flatness implies:

- if *M* is compact, then any Killing vector field is parallel, so the holonomy of *M* reduces and *M* splits as a product,
- if *M* is homogeneous then *g* is flat, so *M* is a quotient of flat R⁴ⁿ by a discrete group (Alekseevskiĭ and Kimel'fel'd 1975).

Take (M, g) complete and *G* Abelian group of tri-holomorphic isometries.

Assume the action is *tri-Hamiltonian*, so there is a *hyperKähler moment map*: a *G*-invariant map

$$\mu = (\mu_I, \mu_J, \mu_K) \colon M \to \mathbb{R}^3 \otimes \mathfrak{g}^*$$

with $d\langle \mu_A, X \rangle = X \,\lrcorner\, \omega_A$. This forces $4 \dim G \leq \dim M$.

GIBBONS-HAWKING ANSATZ IN 4D

X a tri-Hamiltonian vector field on hyperKähler M^4 Away from M^X , locally

$$g = \frac{1}{V}(dt + \omega)^2 + V(dx^2 + dy^2 + dz^2)$$

where V = 1/g(X, X), $dx = X \,\lrcorner\, \omega_I = d\mu_I$, etc., and

$$d\omega = -*_3 dV$$

on \mathbb{R}^3 . In particular,

- μ = (μ_I, μ_J, μ_K) is locally a conformal submersion to (ℝ³, dx² + dy² + dz²),
- *V* is locally a harmonic function on \mathbb{R}^3 .

Examples

$$V(p) = c + rac{1}{2} \sum_{i \in \mathbb{Z}} rac{1}{\|p - p_i\|}, \quad c \ge 0, \quad p_i \in \mathbb{R}^3 ext{ distinct}$$

• c = 0, $|Z| < \infty$: multi-Euguchi Hanson metrics

• c > 0, $|Z| < \infty$: multi-Taub-NUT metrics

$$\begin{array}{c|cccc} |Z| & 0 & 1 & 2 & \dots \\ \text{space} & \text{flat } S^1 \times \mathbb{R}^3 & \text{Taub-NUT } \mathbb{R}^4 & T^* \mathbb{CP}(1) & \dots \end{array}$$

• *Z* countably infinite: require V(p) to converge at some $p \in \mathbb{R}^3$, get A_{∞} metrics (Anderson et al. 1989; Goto 1994), e.g. $Z = \mathbb{N}_{>0}$, $p_n = (n^2, 0, 0)$, and their Taub-NUT deformations.

CLASSIFICATION

Theorem (Swann 2016)

The above potentials

$$V(p) = c + rac{1}{2} \sum_{i \in \mathbb{Z}} rac{1}{\|p - p_i\|}, \qquad c \ge 0, \quad p_i \in \mathbb{R}^3 \ distinct,$$

with $0 < V(p) < \infty$ for some $p \in \mathbb{R}^3$, classify all complete hyperKähler four-manifolds with tri-Hamiltonian circle action.

When $|Z| < \infty$, this is due to Bielawski (1999), and the first parts of the proof are essentially the same.

Proof structure

- The only special orbits are fixed points
- $\mu: M/S^1 \to \mathbb{R}^3$ is a local homeomorphism
- near a fixed point *x*, $V(\mu(y)) = \frac{1}{2} ||\mu(y) - \mu(x)||^{-1} + \phi(\mu(y))$ with ϕ positive harmonic (Bôcher's Theorem; a Chern class)
- $\overline{\mu}: N^3 = (M \setminus M^X) / S^1 \to \mathbb{R}^3$ is conformal: conformal factor *V*, positive harmonic
- can adjust to V superharmonic, so that N becomes complete and use Schoen and Yau (1994) to show
 μ: N → ℝ³ is injective with image Ω having boundary that is polar
- *V* is then given by a Martin integral representation supported on ∂Ω; completeness of *M* forces ∂Ω to be discrete.

TORIC HYPERKÄHLER

(Dancer and Swann 2016)

 M^{4n} complete hyperKähler with tri-Hamiltonian action of T^n . Is given locally by the Pedersen-Poon Ansatz:

$$g = (V^{-1})_{ij}(dt + \omega_i)(dt + \omega_j) + V_{ij}(dx_i dx_j + dy_i dy_j + dz_i dz_j),$$

with $V_{ij} = \frac{\partial^2 F}{\partial x_i \partial x_i}$ with *F* a positive function on $\mathbb{R}^3 \otimes \mathbb{R}^n$ harmonic on every affine three-plane $X_{a.v} = a + \mathbb{R}^3 \otimes v$.

For generic $X_{a,v}$, then $Y = \mu^{-1}(X_{a,v})$ is smooth with free T^{n-1} action, Y/T^{n-1} is complete hyperKähler of dimension 4 with S^1 -action. Above analysis then fixes V on $X_{a,v}$, and F, providing a classification.

All examples may be constructed as hyperKähler quotients of flat affine subspaces of Hilbert spaces, cf. Goto 1994; Hattori 2011.

Hypertoric configuration data

In the hypertoric situation μ is *surjective*:

$$\mu(M^{4n}) = \mathbb{R}^{3n} = \mathbb{R}^3 \otimes \mathbb{R}^n = \operatorname{Im} \mathbb{H} \otimes \mathbb{R}^n.$$

Polytope faces are replaced by affine flats of codimension 3:

$$H_k = H(u_k, \lambda_k) = \{a \in \operatorname{Im} \mathbb{H} \otimes \mathbb{R}^n \mid \langle a, u_k \rangle = \lambda_k \},\$$

 $u_k \in \mathbb{R}^n$, $\lambda_k \in \operatorname{Im} \mathbb{H}$.

Again stabilisers of points mapping to H_k are contained in the subtorus with Lie algebra orthogonal to u_k , forcing $u_k \in \mathbb{Q}^n$. This time $H(u_{k_1}, \lambda_k) \cap \cdots \cap H(u_{k_n}, \lambda_{k_r}) \neq \emptyset$ whenever u_{k_1}, \ldots, u_{k_r} are linearly independent. Smoothness implies each such set u_{k_1}, \ldots, u_{k_r} is part of a \mathbb{Z} -basis for \mathbb{Z}^n , giving a *global* restriction on the u_k 's. Get only finitely many distinct vectors u_k , but possibly infinitely many λ_k 's.

G_2 manifolds

 M^7 with $\varphi \in \Omega^3(M)$ pointwise of the form

$$\varphi = e_{123} + e_{145} + e_{167} + e_{246} - e_{257} - e_{356} - e_{347},$$

 $e_{ijk}=e_i\wedge e_j\wedge e_k.$

- *φ* specifies a metric *g* and an orientation
- The holonomy of *g* lies in G_2 when $d\varphi = 0 = d * \varphi$
- g is then Ricci-flat

Multi-moment maps: T^2 symmetry

(Madsen and Swann 2012) Suppose T^2 acts preserving (M, φ) , holonomy in G_2 , with generating vector fields U, V. The Cartan formula implies $U \,\lrcorner\, V \,\lrcorner\, \varphi$ is closed. A function $\nu \colon M \to \mathbb{R}$ with $d\nu = U \,\lrcorner\, V \,\lrcorner\, \varphi$ is called a *multi-moment map*.

At regular values $X^4 = \nu^{-1}(x)/T^2$ is a four manifold carrying three symplectic forms of the same orientation induced by

$$U \,\lrcorner\, \varphi, \quad V \,\lrcorner\, \varphi, \quad U \,\lrcorner\, V \,\lrcorner\, *\varphi.$$

These do *not* form a hyperKähler structure in general. (M, φ) may be recovered from the four-manifold X^4 by building a T^2 -bundle Y^6 , constructing an SU(3) geometry (σ, ψ_+) on this bundle and then using an adaptation of the Hitchin flow for 'time' derivatives of these forms. Delzant HyperKähler G2

Multi-moment maps: T^3 symmetry

Suppose T^3 acts preserving (M, φ) , holonomy in G_2 , with generating vector fields U, V, W. Multi-moment maps ν_U, ν_V, ν_W given by

$$d\nu_U = V \,\lrcorner\, W \,\lrcorner\, \varphi, \quad \text{etc.}$$

Hamiltonian condition is that this should be T^3 -invariant, is equivalent to $\varphi(U, V, W) = 0$.

There is a fourth multi-moment μ associated to $*\varphi$ via

$$d\mu = U \,\lrcorner\, V \,\lrcorner\, W \,\lrcorner\, *\varphi.$$

 $(\nu_U, \nu_V, \nu_W, \mu) \colon M^7 \to \mathbb{R}^4$ has generic fibre T^3 .

What is the analogue of the Gibbons-Hawking Ansatz?

References

References I

Alekseevskii, D. V. and B. N. Kimel'fel'd (1975), 'Structure of homogeneous Riemannian spaces with zero Ricci curvature', Funktsional. Anal. i Prilozhen. 9:2, pp. 5-11, trans. as 'Structure of homogeneous Riemannian spaces with zero Ricci curvature', Functional Anal. Appl. 9:2, pp. 97-102. Anderson, M. T., P. B. Kronheimer and C. LeBrun (1989), 'Complete Ricci-flat Kähler manifolds of infinite topological type', Comm. Math. Phys. 125:4, pp. 637-642. Bielawski, R. (1999), 'Complete hyper-Kähler 4n-manifolds with a local tri-Hamiltonian \mathbb{R}^n -action', Math. Ann. 314:3, pp. 505-528. Dancer, A. S. and A. F. Swann (2016), 'Hypertoric manifolds and hyperKähler moment maps', arXiv: 1607.04078

References

References II

- Goto, R. (1994), 'On hyper-Kähler manifolds of type A_{∞} ', *Geometric and Funct. Anal.* 4, pp. 424–454.
- Hattori, K. (2011), 'The volume growth of hyper-Kähler manifolds of type A_{∞} ', *Journal of Geometric Analysis* **21**:4, pp. 920–949.
 - Madsen, T. B. and A. F. Swann (2012), 'Multi-moment maps', *Adv. Math.* **229**, pp. 2287–2309.
 - Schoen, R. and S.-T. Yau (1994), Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, Translated from the Chinese by Ding and S. Y. Cheng, Preface translated from the Chinese by Kaising Tso, International Press, Cambridge, MA, pp. v+235.

References

References III

Swann, A. F. (2016), 'Twists versus modifications', *Adv. Math.* **303**, pp. 611–637.