T is for Twist

Andrew Swann

University of Southern Denmark swann@imada.sdu.dk

September 2006 / Puerto de la Cruz

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1 Motivation

- HKT and String Duals
- Geometry with Torsion

三日 わへの

글 🕨 🖌 글

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

- Joyce's Twist
- Grantcharov-Poon

= 200

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

- Joyce's Twist
- Grantcharov-Poon

3 General Twists

- Lifting Actions
- Transformation Rules

 $= \mathcal{O} Q \bigcirc$

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

- Joyce's Twist
- Grantcharov-Poon

3 General Twists

- Lifting Actions
- Transformation Rules

4 Examples

- HKT
- Strong KT

 $= \mathcal{O} Q \bigcirc$

= 200

Outline

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

- Joyce's Twist
- Grantcharov-Poon

3 General Twists

- Lifting Actions
- Transformation Rules

4 Examples

- HKT
- Strong KT

An Example of T-duality

HyperKähler M⁴

 $ds^{2} = V^{-1}(d\tau + \omega)^{2} + V\gamma_{ij}dx^{i}dx^{j}$ $dV = *_{3}d\omega$

T duality

$$\begin{array}{c} \text{T duality} \\ \leftrightarrow \\ \text{on } X = \frac{\partial}{\partial \tau} \end{array} \begin{array}{c} \text{Strong HKT } W^4 \\ ds^2 = V(d^2\tau + \gamma_{ij}dx^i dx) \\ c = -d\tau \wedge d\omega \end{array}$$

E SQA

э

An Example of T-duality

HyperKähler M⁴

 $ds^{2} = V^{-1}(d\tau + \omega)^{2} + V\gamma_{ij}dx^{i}dx^{j}$ $dV = *_{3}d\omega$

T duality

$$ds^2 = V(d^2\tau + \gamma_{ij}dx^i dx^j)$$

 $c = -d\tau \wedge d\omega$

- Gibbons, Papadopoulos, and Stelle, 1997
- Callan, Harvey, and Strominger, 1991
- Bergshoeff, Hull, and Ortín, 1995

An Example of T-duality

HyperKähler M⁴

 $ds^{2} = V^{-1}(d\tau + \omega)^{2} + V\gamma_{ij}dx^{i}dx^{j}$ $dV = *_{3}d\omega$

- Gibbons, Papadopoulos, and Stelle, 1997
- Callan, Harvey, and Strominger, 1991
- Bergshoeff, Hull, and Ortín, 1995

For circle actions have:

$$R \leftrightarrow 1/R$$
 and here $W = (M/S^1) \times S^1$

= 2000

Outline

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

- Joyce's Twist
- Grantcharov-Poon

3 General Twists

- Lifting Actions
- Transformation Rules

4 Examples

- HKT
- Strong KT

< E

▶ ΞΙ= •○ ٩.0

Geometry with Torsion

Metric geometry with torsion

- metric *g*
- connection ∇
- $\nabla g = 0$

> = = ~ ~ ~

Geometry with Torsion

Metric geometry with torsion

- metric *g*
- connection ∇
- $\nabla g = 0$
- $c(X, Y, Z) = g(T^{\nabla}(X, Y), Z) = g(\nabla_X Y \nabla_Y X [X, Y], Z)$ is a three-form

> = = ~ ~ ~

Geometry with Torsion

Metric geometry with torsion

- metric *g*
- connection ∇
- $\nabla g = 0$
- $c(X, Y, Z) = g(T^{\nabla}(X, Y), Z) = g(\nabla_X Y \nabla_Y X [X, Y], Z)$ is a three-form

Have

$$\nabla = \nabla^{\rm LC} + \frac{1}{2}c$$

- Any $c \in \Omega^3(M)$ will do
- ∇ and ∇^{LC} have the same geodesics/dynamics

Geometry with Torsion

Metric geometry with torsion

- metric *g*
- connection ∇
- $\nabla g = 0$
- $c(X, Y, Z) = g(T^{\nabla}(X, Y), Z) = g(\nabla_X Y \nabla_Y X [X, Y], Z)$ is a three-form

Have

$$\nabla = \nabla^{\rm LC} + \frac{1}{2}c$$

- Any $c \in \Omega^3(M)$ will do
- ∇ and ∇^{LC} have the same geodesics/dynamics

Definition

The geometry is *strong* if dc = 0

I = ► = = < < <</p>

KT Geometry

Metric geometry $g, \nabla = \nabla^{\text{LC}} + \frac{1}{2}c, c \in \Lambda^3 T^*M$

KT geometry

additionally

- *I* integrable complex structure
- g(IX, IY) = g(X, Y)
- $\nabla I = 0$

Here $I: TM \to TM$ with

$$I^2 = -1 \qquad N_I = 0$$

where $N_I(X, Y) =$ [IX, IY] - I[IX, Y] - I[X, IY] - [X, Y]

> = = ~ ~ ~

KT Geometry

Metric geometry g, $\nabla = \nabla^{\text{LC}} + \frac{1}{2}c, c \in \Lambda^3 T^*M$

KT geometry

additionally

- *I* integrable complex structure
- g(IX, IY) = g(X, Y)
- $\nabla I = 0$

Here $I: TM \to TM$ with

$$I^2 = -1$$
 $N_I = 0$

where $N_I(X, Y) =$ [IX, IY] - I[IX, Y] - I[X, IY] - [X, Y] Given (g, I) the connection ∇ is *unique*: $c = -IdF_I$, where $F_I(X, Y) = g(IX, Y)$

- KT geometry is just Hermitian geometry together with the Bismut connection ∇
- c = 0 is Kähler geometry
- strong KT geometry is $\partial \bar{\partial} F_I = 0$
- Gauduchon 1991: every compact Hermitian *M*⁴ is conformal to strong KT

□ ▶ < @ ▶ < E ▶ < E ► E = 900</p>

HKT geometry

HKT structure

 (g, ∇, I, J, K) such that

- each (g, ∇, A) is KT, A = I, J, K
- IJ = K = -JI

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ♪ りへつ

HKT geometry

HKT structure

 (g, ∇, I, J, K) such that

- each (g, ∇, A) is KT, A = I, J, K
- IJ = K = -JI

Motto

HKT geometry is a quaternionic analogue of Kähler geometry

HKT geometry

HKT structure

 (g, ∇, I, J, K) such that

- each (g, ∇, A) is KT, A = I, J, K
- IJ = K = -JI

Motto

HKT geometry is a quaternionic analogue of Kähler geometry

- most commonly encountered hypercomplex structures (*M*, *I*, *J*, *K*) admit an HKT metric — but not all.
- there is a good potential theory $F_I = \frac{1}{2}(1 - J)dId\rho$

HKT geometry

HKT structure

 (g, ∇, I, J, K) such that

- each (g, ∇, A) is KT, A = I, J, K
- IJ = K = -JI

Motto

HKT geometry is a quaternionic analogue of Kähler geometry

- most commonly encountered hypercomplex structures (*M*, *I*, *J*, *K*) admit an HKT metric — but not all.
- there is a good potential theory $F_I = \frac{1}{2}(1 - J)dId\rho$

Example

 $G = SU(3) = M^8$, bi-invariant g is strong HKT

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

Joyce's Twist

Grantcharov-Poon

3 General Twists

- Lifting Actions
- Transformation Rules

4 Examples

- HKT
- Strong KT

= 2000

• (M, I, J, K) hypercomplex, i.e., I, J, K integrable, IJ = K = -JI

- (M, I, J, K) hypercomplex, i.e., I, J, K integrable, IJ = K = -JI
- *G* a Lie group acting on *M* preserving *I*, *J* and *K*

Joyce Grantcharov-Poon

Joyce's Twist Construction

- (M, I, J, K) hypercomplex, i.e., I, J, K integrable, IJ = K = -JI
- *G* a Lie group acting on *M* preserving *I*, *J* and *K*
- $(P,\theta) \to M$ a *G*-instanton, i.e., curvature $F_{\theta} \in \bigcap_{A=I,J,K} \Lambda_A^{1,1} \otimes \mathfrak{g}$

▲ ∃ ▶ ∃ | = √Q ∩

- (M, I, J, K) hypercomplex, i.e., I, J, K integrable, IJ = K = -JI
- *G* a Lie group acting on *M* preserving *I*, *J* and *K*
- $(P,\theta) \to M$ a *G*-instanton, i.e., curvature $F_{\theta} \in \bigcap_{A=I,I,K} \Lambda_A^{1,1} \otimes \mathfrak{g}$
- F_{θ} is *G*-equivariant

▲ ∃ ▶ ∃ | = √Q ∩

- (M, I, J, K) hypercomplex, i.e., I, J, K integrable, IJ = K = -JI
- *G* a Lie group acting on *M* preserving *I*, *J* and *K*
- $(P,\theta) \to M$ a *G*-instanton, i.e., curvature $F_{\theta} \in \bigcap_{A=I,I,K} \Lambda_A^{1,1} \otimes \mathfrak{g}$
- F_{θ} is *G*-equivariant

Theorem (Joyce, 1992)

The quotient W of P by a transverse lift of G is hypercomplex

▲ ∃ ▶ ∃ = ♥ ♥ ♥ ♥

- (M, I, J, K) hypercomplex, i.e., I, J, K integrable, IJ = K = -JI
- *G* a Lie group acting on *M* preserving *I*, *J* and *K*
- $(P,\theta) \to M$ a *G*-instanton, i.e., curvature $F_{\theta} \in \bigcap_{A=I,I,K} \Lambda_A^{1,1} \otimes \mathfrak{g}$
- F_{θ} is *G*-equivariant

Theorem (Joyce, 1992)

The quotient W of P by a transverse lift of G is hypercomplex

Proof.

P pulls-back to a holomorphic bundle on the twistor space *Z* on *M* whose quotient is the twistor space of *W*.

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

- Joyce's Twist
- Grantcharov-Poon

3 General Twists

- Lifting Actions
- Transformation Rules

4 Examples

- HKT
- Strong KT

= 2000

• (M, g, I, J, K) HKT

□ ▶ < @ ▶ < E ▶ < E ► E = 900</p>

- (M, g, I, J, K) HKT
- a circle *U*(1) acting on *M* preserving *g*, *I*, *J* and *K*

> = = ~ ~ ~

- (E

- (M, g, I, J, K) HKT
- a circle *U*(1) acting on *M* preserving *g*, *I*, *J* and *K*

•
$$(P,\theta) \to M$$
 a $U(1)$ -instanton, $F_{\theta} = d\theta \in \bigcap_{A=I,J,K} \Lambda_A^{1,1}$

> = = ~ ~ ~

- (E

- (M, g, I, J, K) HKT
- a circle *U*(1) acting on *M* preserving *g*, *I*, *J* and *K*
- $(P,\theta) \to M$ a U(1)-instanton, $F_{\theta} = d\theta \in \bigcap_{A=I,J,K} \Lambda_A^{1,1}$
- F_{θ} is U(1)-invariant

I = ► = = < < <</p>

- (M, g, I, J, K) HKT
- a circle *U*(1) acting on *M* preserving *g*, *I*, *J* and *K*
- $(P,\theta) \to M$ a U(1)-instanton, $F_{\theta} = d\theta \in \bigcap_{A=I,J,K} \Lambda_A^{1,1}$
- F_{θ} is U(1)-invariant

Theorem (Grantcharov and Poon, 2000)

The quotient W of P by the diagonal action of U(1) is HKT

- (M, g, I, J, K) HKT
- a circle *U*(1) acting on *M* preserving *g*, *I*, *J* and *K*
- $(P,\theta) \to M$ a U(1)-instanton, $F_{\theta} = d\theta \in \bigcap_{A=I,J,K} \Lambda_A^{1,1}$
- F_{θ} is U(1)-invariant

Theorem (Grantcharov and Poon, 2000)

The quotient W of P by the diagonal action of U(1) is HKT

Proof.

Let $\mathcal{H} = \ker \theta$ be the horizontal distribution in *P*. Lift *g*, *I*, *J* and *K* to \mathcal{H} and then push these forward to *W*. Check the HKT conditions.

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

- Joyce's Twist
- Grantcharov-Poon

3 General Twists

- Lifting Actions
- Transformation Rules

4 Examples

- HKT
- Strong KT

= 2000

Lifting Group Actions

- X a vector field on M
- $P \xrightarrow{\pi} M$ a principal S^1 -bundle, generator Y
- θ a connection in *P*
- $L_X F_{\theta} = 0$

= 2000

Lifting Group Actions

- X a vector field on M
- $P \xrightarrow{\pi} M$ a principal S^1 -bundle, generator Y
- θ a connection in *P*
- $L_X F_{\theta} = 0$

Put

$$X^{\theta} := X \,\lrcorner\, F_{\theta} = F_{\theta}(X, \cdot)$$

Lifting Group Actions

- X a vector field on M
- $P \xrightarrow{\pi} M$ a principal S^1 -bundle, generator Y
- θ a connection in *P*
- $L_X F_{\theta} = 0$

Put

$$X^{\theta} := X \,\lrcorner\, F_{\theta} = F_{\theta}(X, \cdot)$$

Lemma

There is X' on P preserving θ and projecting to X if and only if X^{θ} is exact. Lifts are parameterised by \mathbb{R} .

 $= \mathcal{O} Q Q$

Lifting Group Actions

- X a vector field on M
- $P \xrightarrow{\pi} M$ a principal S^1 -bundle, generator Y
- θ a connection in *P*
- $L_X F_{\theta} = 0$

Put

$$X^{\theta} := X \,\lrcorner\, F_{\theta} = F_{\theta}(X, \cdot)$$

Lemma

There is X' on P preserving θ and projecting to X if and only if X^{θ} is exact. Lifts are parameterised by \mathbb{R} .

Proof.

Let \tilde{X} be the horizontal lift of X. Then $X' = \tilde{X} + aY$

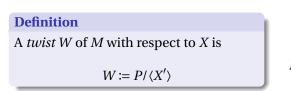
> = = ~ ~ ~

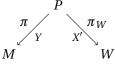
with $da = -X^{\theta}$.

- X generating a circle action on M
- $(P,\theta) \xrightarrow{\pi} M$ an invariant principal S^1 -bundle
- *X*′ a lift of *X* generating a free circle action

 $= \mathcal{O} Q \bigcirc$

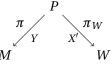
- X generating a circle action on M
- $(P,\theta) \xrightarrow{\pi} M$ an invariant principal S^1 -bundle
- *X*′ a lift of *X* generating a free circle action





- X generating a circle action on M
- $(P,\theta) \xrightarrow{\pi} M$ an invariant principal S^1 -bundle
- *X*′ a lift of *X* generating a free circle action

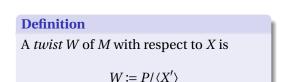


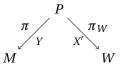


The twist carries

- circle action generated by $X_W = (\pi_W)_* Y$
- principal bundle P, X' connection $\theta_W = \frac{1}{a}\theta$

- X generating a circle action on M
- $(P,\theta) \xrightarrow{\pi} M$ an invariant principal S^1 -bundle
- *X*′ a lift of *X* generating a free circle action





The twist carries

- circle action generated by $X_W = (\pi_W)_* Y$
- principal bundle P, X' connection $\theta_W = \frac{1}{a}\theta$

Dually

M is a twist of W with respect to X_W

Outline

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

- Joyce's Twist
- Grantcharov-Poon

3 General Twists

- Lifting Actions
- Transformation Rules

4 Examples

- HKT
- Strong KT

Definition

Tensors α on α_W on M and W are said to be \mathcal{H} -*related* if their pull-backs agree on $\mathcal{H} = \ker \theta$

Definition

Tensors α on α_W on M and W are said to be \mathcal{H} -*related* if their pull-backs agree on $\mathcal{H} = \ker \theta$

• For *p*-forms

$$\pi_W^* \alpha_W = \pi^* \alpha - \theta \wedge \pi^* (\frac{1}{a} X \,\lrcorner\, \alpha)$$

E SQA

Definition

Tensors α on α_W on M and W are said to be \mathcal{H} -*related* if their pull-backs agree on $\mathcal{H} = \ker \theta$

• For *p*-forms

$$\pi_W^* \alpha_W = \pi^* \alpha - \theta \wedge \pi^* (\frac{1}{a} X \lrcorner \alpha)$$

For metrics

$$\pi_W^* g_W = \pi^* g - 2\theta \vee \pi^* (\frac{1}{a} X^{\flat}) + \pi^* (\frac{1}{a^2} \|X\|^2) \theta^2$$

Definition

Tensors α on α_W on M and W are said to be \mathcal{H} -*related* if their pull-backs agree on $\mathcal{H} = \ker \theta$

• For *p*-forms

$$\pi_W^* \alpha_W = \pi^* \alpha - \theta \wedge \pi^* (\frac{1}{a} X \lrcorner \alpha)$$

For metrics

$$\pi_W^* g_W = \pi^* g - 2\theta \vee \pi^* (\frac{1}{a} X^{\flat}) + \pi^* (\frac{1}{a^2} \|X\|^2) \theta^2$$

Lemma

 $d\alpha_W$ is \mathcal{H} -related to a form on M if and only if $L_X \alpha = 0$. Then $d\alpha_W \sim_{\mathcal{H}} d\alpha - F_{\theta} \wedge \frac{1}{a} X \,\lrcorner\, \alpha$.

Almost Hermitian Twist

Definition

Let (M, g, F_I) be an almost Hermitian structure invariant under X. This has *twist* (W, g_W, F_I^W) where

• $g_W \sim_{\mathscr{H}} g$ • $F_I^W \sim_{\mathscr{H}} F_I$

・日本 * 日本 * 日本 * 日本 * 1000

Almost Hermitian Twist

Definition

Let (M, g, F_I) be an almost Hermitian structure invariant under X. This has *twist* (W, g_W, F_I^W) where

• $g_W \sim_{\mathcal{H}} g$ • $F_I^W \sim_{\mathcal{H}} F_I$

Proposition

• If I is integrable then I_W is integrable if and only if $F_{\theta} \in \Lambda^{1,1}$

ELE DQA

Lifting Transforming

Almost Hermitian Twist

Definition

Let (M, g, F_I) be an almost Hermitian structure invariant under X. This has *twist* (W, g_W, F_I^W) where

•
$$g_W \sim_{\mathcal{H}} g$$

• $F_I^W \sim_{\mathcal{H}} F_I$

Proposition

- If I is integrable then I_W is integrable if and only if $F_{\theta} \in \Lambda^{1,1}$
- the forms $c = -IdF_I$ are related by

$$c_W \sim_{\mathscr{H}} c - \frac{1}{a} X^{\flat} \wedge IF_{\theta}$$

Lifting Transforming

Transformation Rules II

Corollary

If (M, g, I, J, K) is hyperHermitian (resp. HKT) then (W, g_W, I_W, J_W, K_W) is hyperHermitian (resp. HKT) if and only if

 $F_{\theta} \in \bigcap_{A=I,J,K} \Lambda_A^{1,1}$

▲冊▶▲∃▶▲∃▶ ∃|= ∽へ⊙

Lifting Transforming

Transformation Rules II

Corollary

If (M, g, I, J, K) is hyperHermitian (resp. HKT) then (W, g_W, I_W, J_W, K_W) is hyperHermitian (resp. HKT) if and only if

 $F_{\theta} \in \bigcap_{A=I,J,K} \Lambda_A^{1,1}$

Corollary

For M KT (resp. HKT) and F_{θ} an instanton, W is strong if and only if

$$dc = \frac{1}{a}(dX^{\flat} + X \lrcorner c - \frac{1}{a} ||X||^2 F_{\theta}) \wedge F_{\theta}$$

A目を A 目を A 目を A 目を のなの

Outline

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

- Joyce's Twist
- Grantcharov-Poon

3 General Twists

- Lifting Actions
- Transformation Rules

ExamplesHKT

• Strong KT

- $g = \frac{1}{V}\varphi^2 + Vh$ hyperKähler, c = 0
- hyperKähler isometry X

•
$$\varphi(X) = 1$$
, $L_X \varphi = 0$
• $X^{\flat} = V^{-1} \varphi$, $V = \|X\|^{-2}$
• $dX^{\flat} \in \bigcap_{A = I, J, K} \Lambda_A^{1, 1}$

三日 のへで

- (E

- $g = \frac{1}{V}\varphi^2 + Vh$ hyperKähler, c = 0
- hyperKähler isometry X

•
$$\varphi(X) = 1, \quad L_X \varphi = 0$$

• $X^{\flat} = V^{-1} \varphi, \quad V = ||X||^{-2}$
• $dX^{\flat} \in \bigcap_{A=I,J,K} \Lambda_A^{1,1}$

Taking $F_{\theta} = \lambda dX^{\flat} \neq 0$ gives an HKT twist if $X \,\lrcorner\, F_{\theta} = -\lambda d \|X\|^2$ is exact, so $\lambda = \lambda(\|X\|^2)$.

 $= \mathcal{O} Q Q$

- $g = \frac{1}{V}\varphi^2 + Vh$ hyperKähler, c = 0
- hyperKähler isometry X

•
$$\varphi(X) = 1, \quad L_X \varphi = 0$$

• $X^{\flat} = V^{-1}\varphi, \quad V = \|X\|^{-2}$
• $dX^{\flat} \in \bigcap_{A=I,J,K} \Lambda_A^{1,1}$

Taking $F_{\theta} = \lambda dX^{\flat} \neq 0$ gives an HKT twist if $X \,\lrcorner\, F_{\theta} = -\lambda d \|X\|^2$ is exact, so $\lambda = \lambda (\|X\|^2)$. The twist is strong HKT if and only if

$$dc = \frac{1}{a}(dX^{\flat} + X \lrcorner c - \frac{1}{a}||X||^{2}F_{\theta}) \wedge F_{\theta},$$
$$da = \lambda d||X||^{2}$$

= nan

- $g = \frac{1}{V}\varphi^2 + Vh$ hyperKähler, c = 0
- hyperKähler isometry X

•
$$\varphi(X) = 1, \quad L_X \varphi = 0$$

• $X^{\flat} = V^{-1} \varphi, \quad V = ||X||^{-2}$
• $dX^{\flat} \in \bigcap_{A=I,J,K} \Lambda_A^{1,1}$

Taking $F_{\theta} = \lambda dX^{\flat} \neq 0$ gives an HKT twist if $X \,\lrcorner\, F_{\theta} = -\lambda d \|X\|^2$ is exact, so $\lambda = \lambda (\|X\|^2)$. The twist is strong HKT if and only if

$$dc = \frac{1}{a}(dX^{\flat} + X \lrcorner c - \frac{1}{a} ||X||^{2} F_{\theta}) \wedge F_{\theta},$$
$$da = \lambda d ||X||^{2}$$

which says

$$0 = \frac{\lambda}{a} (1 - \frac{\lambda}{a} ||X||^2) dX^{\flat} \wedge dX^{\flat}$$

and gives λ constant.

HKT Strong KT

From a HyperKähler Metric

- $g = \frac{1}{V}\varphi^2 + Vh$ hyperKähler, c = 0
- hyperKähler isometry X

•
$$\varphi(X) = 1$$
, $L_X \varphi = 0$
• $X^{\flat} = V^{-1} \varphi$, $V = \|X\|^{-2}$
• $dX^{\flat} \in \bigcap_{A=I,J,K} \Lambda_A^{1,1}$

Taking $F_{\theta} = \lambda dX^{\flat} \neq 0$ gives an HKT twist if $X \,\lrcorner\, F_{\theta} = -\lambda d \|X\|^2$ is exact, so $\lambda = \lambda(\|X\|^2)$. The twist is strong HKT if and only if

$$\begin{split} dc &= \frac{1}{a} (dX^{\flat} + X \lrcorner c - \frac{1}{a} \|X\|^2 F_{\theta}) \wedge F_{\theta}, \\ da &= \lambda d \|X\|^2 \end{split}$$

which says

$$0 = \frac{\lambda}{a} (1 - \frac{\lambda}{a} ||X||^2) dX^{\flat} \wedge dX^{\flat}$$

and gives λ constant.

This is a twist via a trivial bundle with non-flat connection.

$\mathscr{U}(\mathbb{CP}(2)) = (V_{-} \setminus 0)/\{\pm 1\}$ carries a hyperKähler metric:

▶ ∢ ≣

→ ∢ ≣

三日 のへの

 $\mathscr{U}(\mathbb{CP}(2)) = (V_{-} \setminus 0) / \{\pm 1\}$ carries a hyperKähler metric: • $\mathscr{U}(\mathbb{CP}(2)) = \{A \in M_3(\mathbb{C}) : A^2 = 0, \operatorname{rank} A = 1\}$

EL OQO

- (E

 $\mathscr{U}(\mathbb{CP}(2)) = (V_{-} \setminus 0)/\{\pm 1\}$ carries a hyperKähler metric:

• $\mathscr{U}(\mathbb{CP}(2)) = \{A \in M_3(\mathbb{C}) :$

 $A^2 = 0$, rank A = 1}

•
$$F_I = i\partial\bar{\partial}\rho$$
, $\rho(A) = k \operatorname{Tr} AA^*$

EL OQO

- (E

 $\mathscr{U}(\mathbb{CP}(2)) = (V_{-} \setminus 0)/\{\pm 1\}$ carries a hyperKähler metric:

- $\mathcal{U}(\mathbb{CP}(2)) = \{A \in M_3(\mathbb{C}) : A^2 = 0, \operatorname{rank} A = 1\}$
- $F_I = i\partial \bar{\partial} \rho$, $\rho(A) = k \operatorname{Tr} A A^*$
- $(F_J + iF_K)([A, \xi], [A, \eta]) =$ Tr $(A[\xi, \eta])$ the KKS form

 $\mathscr{U}(\mathbb{CP}(2)) = (V_{-} \setminus 0)/\{\pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{CP}(2)) = \{A \in M_3(\mathbb{C}) : A^2 = 0, \operatorname{rank} A = 1\}$
- $F_I = i\partial \bar{\partial} \rho$, $\rho(A) = k \operatorname{Tr} A A^*$
- $(F_J + iF_K)([A, \xi], [A, \eta]) =$ Tr $(A[\xi, \eta])$ the KKS form
- \mathbb{Z} -action generated by $A \mapsto 2A$ is triholomorphic but not an isometry,

|⊒ ⁄) Q (^

 $\mathscr{U}(\mathbb{CP}(2)) = (V_{-} \setminus 0)/\{\pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{CP}(2)) = \{A \in M_3(\mathbb{C}) : A^2 = 0, \operatorname{rank} A = 1\}$
- $F_I = i\partial \bar{\partial} \rho$, $\rho(A) = k \operatorname{Tr} A A^*$
- $(F_J + iF_K)([A, \xi], [A, \eta]) =$ Tr $(A[\xi, \eta])$ the KKS form

Z-action generated by *A* → 2*A* is triholomorphic but not an isometry, but $M = \mathcal{U}(\mathbb{C}P(2))/\mathbb{Z}$ is HKT with

$$g = \frac{1}{\rho} g_{\mathcal{U}} - \frac{1}{2\rho^2} (d^{\mathbb{H}} \rho)^2$$

 $\mathscr{U}(\mathbb{CP}(2)) = (V_{-} \setminus 0)/\{\pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{CP}(2)) = \{A \in M_3(\mathbb{C}) : A^2 = 0, \operatorname{rank} A = 1\}$
- $F_I = i\partial \bar{\partial} \rho$, $\rho(A) = k \operatorname{Tr} A A^*$
- $(F_J + iF_K)([A, \xi], [A, \eta]) =$ Tr $(A[\xi, \eta])$ the KKS form

 \mathbb{Z} -action generated by $A \mapsto 2A$ is triholomorphic but not an isometry, but $M = \mathscr{U}(\mathbb{C}P(2))/\mathbb{Z}$ is HKT with

$$g = \frac{1}{\rho} g_{\mathcal{U}} - \frac{1}{2\rho^2} (d^{\mathbb{H}} \rho)^2$$

• Topologically $\mathscr{U}(\mathbb{CP}(2))/\mathbb{Z} = \frac{SU(3)}{U(1)} \times S^1$. The S^1 acts as HKT isometries.

1 = n a a

 $\mathscr{U}(\mathbb{CP}(2)) = (V_{-} \setminus 0)/\{\pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{CP}(2)) = \{A \in M_3(\mathbb{C}) : A^2 = 0, \operatorname{rank} A = 1\}$
- $F_I = i\partial \bar{\partial} \rho$, $\rho(A) = k \operatorname{Tr} A A^*$
- $(F_J + iF_K)([A, \xi], [A, \eta]) =$ Tr $(A[\xi, \eta])$ the KKS form

Z-action generated by *A* → 2*A* is triholomorphic but not an isometry, but $M = \mathcal{U}(\mathbb{C}P(2))/\mathbb{Z}$ is HKT with

$$g = \frac{1}{\rho} g_{\mathcal{U}} - \frac{1}{2\rho^2} (d^{\mathbb{H}} \rho)^2$$

- Topologically $\mathscr{U}(\mathbb{CP}(2))/\mathbb{Z} = \frac{SU(3)}{U(1)} \times S^1$. The S^1 acts as HKT isometries.
- *b*₂(CP(2)) = 1 generated by [ω_{CP(2)}]
- P, θ pull-back to $M = \mathcal{U}(\mathbb{CP}(2))/\mathbb{Z}$ of the circle bundle with $F_{\theta} = \pi^* \omega_{\mathbb{CP}(2)}$

▶ ∃ = 𝔄 𝔄 𝔄

 $\mathscr{U}(\mathbb{CP}(2)) = (V_{-} \setminus 0)/\{\pm 1\}$ carries a hyperKähler metric:

- $\mathscr{U}(\mathbb{CP}(2)) = \{A \in M_3(\mathbb{C}) : A^2 = 0, \operatorname{rank} A = 1\}$
- $F_I = i\partial \bar{\partial} \rho$, $\rho(A) = k \operatorname{Tr} A A^*$
- $(F_J + iF_K)([A, \xi], [A, \eta]) =$ Tr $(A[\xi, \eta])$ the KKS form

 \mathbb{Z} -action generated by $A \mapsto 2A$ is triholomorphic but not an isometry, but $M = \mathscr{U}(\mathbb{C}P(2))/\mathbb{Z}$ is HKT with

$$g = \frac{1}{\rho} g_{\mathcal{U}} - \frac{1}{2\rho^2} (d^{\mathbb{H}} \rho)^2$$

- Topologically $\mathcal{U}(\mathbb{CP}(2))/\mathbb{Z} = \frac{SU(3)}{U(1)} \times S^1$. The S^1 acts as HKT isometries.
- *b*₂(CP(2)) = 1 generated by [ω_{CP(2)}]
- P, θ pull-back to $M = \mathcal{U}(\mathbb{CP}(2))/\mathbb{Z}$ of the circle bundle with $F_{\theta} = \pi^* \omega_{\mathbb{CP}(2)}$

Twist of $\mathcal{U}(\mathbb{CP}(2))/\mathbb{Z}$ is strong HKT structure on *SU*(3).

Outline

1 Motivation

- HKT and String Duals
- Geometry with Torsion

2 Instanton Twists

- Joyce's Twist
- Grantcharov-Poon

3 General Twists

- Lifting Actions
- Transformation Rules

- HKT
- Strong KT

Twisting a Torus

- $M = T^{2n}$ invariant Hermitian (g, I)
- *X* a generator for a circle
- F_{θ} an invariant integral two-form with $X \,\lrcorner\, F_{\theta} = 0$

Twisting a Torus

- $M = T^{2n}$ invariant Hermitian (g, I)
- *X* a generator for a circle
- F_{θ} an invariant integral two-form with $X \,\lrcorner\, F_{\theta} = 0$

The twist *W* of *M* is a compact nilmanifold $\Gamma \setminus G$ where g has commutators given by

 $[A,B]=F_{\theta}(A,B)Y,$

Y central.

 $= \mathcal{O} Q Q$

Twisting a Torus

- $M = T^{2n}$ invariant Hermitian (g, I)
- X a generator for a circle
- F_{θ} an invariant integral two-form with $X \,\lrcorner\, F_{\theta} = 0$

The twist *W* of *M* is a compact nilmanifold $\Gamma \setminus G$ where g has commutators given by

 $[A,B] = F_{\theta}(A,B)Y,$

Y central.

Can repeatedly twist using different central X_i and closed two-forms F_i .

= nan

- $M = T^{2n}$ invariant Hermitian (g, I)
- *X* a generator for a circle
- F_{θ} an invariant integral two-form with $X \,\lrcorner\, F_{\theta} = 0$

The twist *W* of *M* is a compact nilmanifold $\Gamma \setminus G$ where g has commutators given by

 $[A, B] = F_{\theta}(A, B) Y,$

Y central.

Can repeatedly twist using different central X_i and closed two-forms F_i .

- Each stage is KT if each *F_i* is type (1, 1)
- Final twist is strong KT if $F_1^2 + F_2^2 + \dots + F_r^2 = 0$

- $M = T^{2n}$ invariant Hermitian (g, I)
- *X* a generator for a circle
- F_{θ} an invariant integral two-form with $X \,\lrcorner\, F_{\theta} = 0$

The twist *W* of *M* is a compact nilmanifold $\Gamma \setminus G$ where g has commutators given by

 $[A, B] = F_{\theta}(A, B) Y,$

Y central.

Can repeatedly twist using different central X_i and closed two-forms F_i .

- Each stage is KT if each *F_i* is type (1, 1)
- Final twist is strong KT if $F_1^2 + F_2^2 + \dots + F_r^2 = 0$

Dim 4 $\mathfrak{g} = (0, 0, 0, 12) = \mathbb{R} + \mathfrak{h}_3$

1 = nan

- $M = T^{2n}$ invariant Hermitian (g, I)
- *X* a generator for a circle
- F_{θ} an invariant integral two-form with $X \,\lrcorner\, F_{\theta} = 0$

The twist *W* of *M* is a compact nilmanifold $\Gamma \setminus G$ where g has commutators given by

$$[A, B] = F_{\theta}(A, B) Y,$$

Y central.

Can repeatedly twist using different central X_i and closed two-forms F_i .

- Each stage is KT if each *F_i* is type (1, 1)
- Final twist is strong KT if $F_1^2 + F_2^2 + \dots + F_r^2 = 0$

Dim 4
$$\mathfrak{g} = (0, 0, 0, 12) =$$

 $\mathbb{R} + \mathfrak{h}_3$
Dim 6 $(0^5, 12) = \mathbb{R}^3 + \mathfrak{h}_3,$
 $(0^4, 12, 34) = 2 \mathfrak{h}_3$

= nan

- $M = T^{2n}$ invariant Hermitian (g, I)
- *X* a generator for a circle
- F_{θ} an invariant integral two-form with $X \,\lrcorner\, F_{\theta} = 0$

The twist *W* of *M* is a compact nilmanifold $\Gamma \setminus G$ where g has commutators given by

$$[A, B] = F_{\theta}(A, B) Y,$$

Y central.

Can repeatedly twist using different central X_i and closed two-forms F_i .

- Each stage is KT if each *F_i* is type (1, 1)
- Final twist is strong KT if $F_1^2 + F_2^2 + \dots + F_r^2 = 0$

Dim 4
$$\mathfrak{g} = (0, 0, 0, 12) = \mathbb{R} + \mathfrak{h}_3$$

Dim 6 $(0^5, 12) = \mathbb{R}^3 + \mathfrak{h}_3, (0^4, 12, 34) = 2 \mathfrak{h}_3$
General $\mathfrak{g} = \mathbb{R}^k + r\mathfrak{h}_3$

Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras

 $(0^5, 12), (0^4, 12, 34), (0^4, 12, 14+23), (0^4, 13+42, 14+23)$

Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras

 $(0^5, 12), (0^4, 12, 34), (0^4, 12, 14+23), (0^4, 13+42, 14+23)$

Instanton twists miss the last two and indeed higher-dimensional examples such as

Nilmanifold Examples

Theorem (Fino, Parton, and Salamon, 2004)

The six-dimensional strong KT nilmanifolds have Lie algebras

 $(0^5, 12), (0^4, 12, 34), (0^4, 12, 14 + 23), (0^4, 13 + 42, 14 + 23)$

Instanton twists miss the last two and indeed higher-dimensional examples such as

Mejldal, 2004

The 8-dimensional nilmanifolds with $g = (0^6, 13 - 24 + 56, 12 - 2.23 + 3.34)$ are irreducible and lie in a 15-dimensional family of invariant strong KT structures.

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

• $M = N^{2n-2} \times T^2$ as a Kähler product

▶ ΞΙ= •○ Q (P)

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M = N^{2n-2} \times T^2$ as a Kähler product
- let T^2 be generated by $X_1, X_2 = IX_1$

E SQA

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M = N^{2n-2} \times T^2$ as a Kähler product
- let T^2 be generated by $X_1, X_2 = IX_1$
- twist using F_1 , F_2 supported on N^{2n-2}

HKT Strong KT

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M = N^{2n-2} \times T^2$ as a Kähler product
- let T^2 be generated by $X_1, X_2 = IX_1$
- twist using F_1 , F_2 supported on N^{2n-2}

Proposition

• The T^2 twist is KT if $(F_1 + iF_2)^{0,2} = 0$.

HKT Strong KT

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M = N^{2n-2} \times T^2$ as a Kähler product
- let T^2 be generated by $X_1, X_2 = IX_1$
- twist using F_1 , F_2 supported on N^{2n-2}

Proposition

- The T^2 twist is KT if $(F_1 + iF_2)^{0,2} = 0$.
- Get strong KT if $F_1 \wedge IF_1 + F_2 \wedge IF_2 = 0$.

HKT Strong KT

Non-instanton Two-Torus Twists

We obtain the missing examples above by a twist as follows

- $M = N^{2n-2} \times T^2$ as a Kähler product
- let T^2 be generated by $X_1, X_2 = IX_1$
- twist using F_1 , F_2 supported on N^{2n-2}

Proposition

- The T^2 twist is KT if $(F_1 + iF_2)^{0,2} = 0$.
- Get strong KT if $F_1 \wedge IF_1 + F_2 \wedge IF_2 = 0$.

Remark

All known strong KT structures on nilmanifolds may be obtained via iterations of the above twist constructions starting from a flat torus.

(日本)

Non-toral Base

- Twisting $M^6 = N^4 \times T^2$
- integrability condition $(F_1 + iF_2)^{0,2} = 0$
- if not instantons then $(F_1 + iF_2)^{0,2}$ is a global holomorphic form on N^4

Suggests taking N^4 to be a K3 surface.

Non-toral Base

- Twisting $M^6 = N^4 \times T^2$
- integrability condition $(F_1 + iF_2)^{0,2} = 0$
- if not instantons then $(F_1 + iF_2)^{0,2}$ is a global holomorphic form on N^4

Suggests taking N^4 to be a K3 surface. Let ω_I , ω_J , ω_K be the Kähler forms on N^4 . The integrability condition gives

$$F_1 + iF_2 = \alpha + \lambda_1 \omega_I + \lambda_2 (\omega_J + i\omega_K)$$

with $\alpha \in \Lambda_I^{1,1}$ orthogonal to ω_I . The strong condition is

$$\alpha \wedge \bar{\alpha} = 4(|\lambda_1|^2 - 2|\lambda_2|^2) \operatorname{vol}_g$$

Also need $[F_1], [F_2] \in H^2(N, \mathbb{Z}) \subset H^2(N, \mathbb{R})$

Non-toral Base

- Twisting $M^6 = N^4 \times T^2$
- integrability condition $(F_1 + iF_2)^{0,2} = 0$
- if not instantons then $(F_1 + iF_2)^{0,2}$ is a global holomorphic form on N^4

Suggests taking N^4 to be a K3 surface. Let ω_I , ω_J , ω_K be the Kähler forms on N^4 . The integrability condition gives

$$F_1 + iF_2 = \alpha + \lambda_1 \omega_I + \lambda_2 (\omega_J + i\omega_K)$$

with $\alpha \in \Lambda_I^{1,1}$ orthogonal to ω_I . The strong condition is

$$\alpha \wedge \bar{\alpha} = 4(|\lambda_1|^2 - 2|\lambda_2|^2) \operatorname{vol}_g$$

Also need $[F_1], [F_2] \in H^2(N, \mathbb{Z}) \subset H^2(N, \mathbb{R})$

Theorem

For linearly independent primitive F_i satisfying the conditions to the left, twist W^6 of $M^6 = N^4 \times T^2$ is a compact simply-connected strong KT manifold.

• T-duality may be realised as a twist construction

三日 のへの

э

- T-duality may be realised as a twist construction
 - based on a double principal bundle $M \longleftarrow P \longrightarrow W$ with common Ehreshmann connection \mathcal{H}

- T-duality may be realised as a twist construction
 - based on a double principal bundle $M \longleftarrow P \longrightarrow W$ with common Ehreshmann connection \mathcal{H}
- defining forms are \mathcal{H} -related

- T-duality may be realised as a twist construction
 - based on a double principal bundle $M \longleftarrow P \longrightarrow W$ with common Ehreshmann connection \mathcal{H}
- defining forms are \mathcal{H} -related
- twisting by instantons preserves KT and HKT geometries

- T-duality may be realised as a twist construction
 - based on a double principal bundle $M \longleftarrow P \longrightarrow W$ with common Ehreshmann connection \mathcal{H}
- defining forms are \mathcal{H} -related
- twisting by instantons preserves KT and HKT geometries
- strong structures may be obtained

▲冊▶▲글▶▲글▶ 글|= ∽へ⊙

- T-duality may be realised as a twist construction
 - based on a double principal bundle $M \longleftarrow P \longrightarrow W$ with common Ehreshmann connection \mathcal{H}
- defining forms are \mathcal{H} -related
- twisting by instantons preserves KT and HKT geometries
- strong structures may be obtained
- non-instanton twists are also necessary

▲ Ξ ► Ξ Ξ < < </p>

References I

- E. Bergshoeff, C. Hull, and T. Ortín. Duality in the type-II superstring effective action. *Nuclear Phys. B*, 451(3):547–575, 1995. ISSN 0550-3213.
- C. G. Callan, Jr., J. A. Harvey, and A. Strominger. Worldsheet approach to heterotic instantons and solitons. *Nuclear Phys. B*, 359(2-3):611–634, 1991. ISSN 0550-3213.
- A. Fino, M. Parton, and S. M. Salamon. Families of strong KT structures in six dimensions. *Comment. Math. Helv.*, 79(2): 317–340, 2004. ISSN 0010-2571.
- P. Gauduchon. Structures de Weyl et théorèmes d'annulation sur une varété conforme autoduale. *Ann. Sc. Norm. Sup. Pisa*, 18: 563–629, 1991.

References II

- G. W. Gibbons, G. Papadopoulos, and K. S. Stelle. HKT and OKT geometries on soliton black hole moduli spaces. *Nuclear Phys. B*, 508(3):623–658, 1997. ISSN 0550-3213.
- G. Grantcharov and Y. S. Poon. Geometry of hyper-Kähler connections with torsion. *Comm. Math. Phys.*, 213(1):19–37, 2000. ISSN 0010-3616.
- D. Joyce. Compact hypercomplex and quaternionic manifolds. *J. Differential Geom.*, 35:743–761, 1992.
- R. Mejldal. Complex manifolds and strong geometries with torsion. Master's thesis, Department of Mathematics and Computer Science, University of Southern Denmark, July 2004.

= 200

Exterior derivative of the torsion form

$$dc_W \sim_{\mathscr{H}} dc - \frac{1}{a} dX^{\flat} \wedge IF_{\theta} + \frac{1}{a} X^{\flat} \wedge d(IF_{\theta}) - F_{\theta} \wedge \frac{1}{a} X \lrcorner c + F_{\theta} \wedge \frac{1}{a^2} \|X\|^2 IF_{\theta} - F_{\theta} \wedge \frac{1}{a} X^{\flat} \wedge X \lrcorner IF_{\theta}$$

EL OQO

э