Geometric Duality

Andrew Swann

IMADA / CP ${ }^{3}$-Origins
University of Southern Denmark
swann@imada.sdu.dk

November 2009 / Odense

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists
■ T-duality as a Twist Construction

Outline

1 Geometry
■ Metric geometry with torsion

- KT Geometry
- HKT Geometry

2 Twists

- T-duality as a Twist Construction

3 Superconformal Symmetry
■ Superconformal Quantum Mechanics
■ The Superalgebras $D(2,1 ; \alpha)$

- Geometric Structure
- HKT Examples

■ Summary

Outline

1 Geometry
■ Metric geometry with torsion

- KT Geometry
- HKT Geometry

2 Twists

- T-duality as a Twist Construction

3 Superconformal Symmetry
■ Superconformal Quantum Mechanics
■ The Superalgebras $D(2,1 ; \alpha)$

- Geometric Structure
- HKT Examples
- Summary

4 Other Examples via the Twist

Geometry from supersymmetry

Classical geometries

- Riemannian/Lorentzian metric $g=\left(g_{i j}\right)$, has a unique covariant derivative ∇^{LC}, Levi-Civita connection, that is metric $\nabla^{\mathrm{LC}} g=0$ and torsion-free $\nabla_{X}^{\mathrm{LC}} Y-\nabla_{Y}^{\mathrm{LC}} X=[X, Y]$:

$$
\begin{aligned}
& 2 g\left(\nabla_{X}^{\mathrm{LC}} Y, Z\right)=X g(Y, Z)+Y g(X, Z)-Z g(X, Y) \\
& \quad+g([X, Y], Z)+g([Z, X], Y)+g(X,[Z, Y]) ; \\
& \nabla_{\frac{\partial}{\partial x^{i}}}^{\mathrm{LC}} \frac{\partial}{\partial x^{j}}=\Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}}, \quad \Gamma_{i j}^{k}=\frac{1}{2} g^{k \ell}\left(g_{\ell i, j}+g_{j \ell, i}-g_{i j, \ell}\right)=\Gamma_{j i}^{k} .
\end{aligned}
$$

Supersymmetry: usually parallel complex structures $J=\left(J_{i}{ }^{j}\right)$:

$$
\begin{gathered}
g(J X, J Y)=g(X, Y), \quad J^{2}=-1, \quad \nabla^{\mathrm{LC}} J=0 ; \\
J_{i}^{\ell} J_{j}{ }^{k} g_{\ell k}=g_{i j}, \quad J_{i}^{j} J_{j}^{k}=-\delta_{i}^{k}, \quad J_{i}^{k}{ }_{, j}=\Gamma_{i j}^{\ell} J_{\ell}{ }^{k} .
\end{gathered}
$$

One complex structure
■ Kähler geometry: Riemann surfaces, $\mathbb{C P}(n)$, projective varieties $X=\bigcap_{i}\left(f_{i}=0\right) \subset \mathbb{C P}(n)$, Hermitian symmetric spaces,...
■ Calabi-Yau manifolds, Kähler with $c_{1}=0$: have Ric $\equiv 0$ so Einstein; $X=(f=0) \subset \mathbb{C P}(n), \operatorname{deg} f=n+1 ;$ K3 surface $\left(x^{4}+y^{4}+z^{4}+w^{4}=0\right) \subset \mathbb{C P}(3)$.
Multiple complex structures
■ HyperKähler geometry $I, J, K, I J=K=-J I$: are Calabi-Yau; K3 surfaces, $T^{4 k}=\mathbb{R}^{4 k} / \mathbb{Z}^{4 k}$; Hilbert schemes; instanton moduli;...
Holonomy classification (Berger,...) essentially only get products of the above examples

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

- T-duality as a Twist Construction

3 Superconformal Symmetry
■ Superconformal Quantum Mechanics

- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure
- HKT Examples
- Summary

4 Other Examples via the Twist

Torsion Geometry

Metric geometry with torsion

- metric g, connection ∇, torsion $T^{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$
■ $\nabla g=0$

Torsion Geometry

Metric geometry with torsion

- metric g, connection ∇, torsion $T^{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$
■ $\nabla g=0$
- $c(X, Y, Z)=g\left(T^{\nabla}(X, Y), Z\right) \mathrm{a}$ three-form

$$
\begin{gathered}
\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}=\gamma_{i j}^{k} \frac{\partial}{\partial x^{k}}, \\
T_{i j}^{\ell}=\gamma_{[i j]}^{k}, \\
c_{i j k}=c_{[i j k]}=g_{\ell k} T_{i j \prime}^{\ell}
\end{gathered}
$$

Torsion Geometry

Metric geometry with torsion

- metric g, connection ∇, torsion $T^{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$
■ $\nabla g=0$
- $c(X, Y, Z)=g\left(T^{\nabla}(X, Y), Z\right) \mathrm{a}$ three-form

$$
\begin{gathered}
\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}=\gamma_{i j}^{k} \frac{\partial}{\partial x^{k}}, \\
T_{i j}^{\ell}=\gamma_{[i j]}^{k}, \\
c_{i j k}=c_{[i j k]}=g_{\ell k} T_{i j \prime}^{\ell}
\end{gathered}
$$

$$
\nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c
$$

$$
\gamma_{i j}^{k}=\Gamma_{i j}^{k}+\frac{1}{2} c_{i j k}
$$

- Any $c \in \Omega^{3}(M)$ will do.
- $\nabla, \nabla^{\text {LC }}$ have the same geodesics (dynamics).
- The geometry is strong if $d c=0$.

Such geometries with extra structure from supersymmetry arise from:

■ Wess-Zumino terms in the Lagrangian, superstrings with torsion, B-fields (Strominger, 1986)

- One-dimensional quantum mechanics with type B supersymmetry, blackhole dynamics and moduli (Michelson and Strominger, 2000; Coles and Papadopoulos, 1990; Hull, 1999; Gibbons et al., 1997)
- Constructions in supergravity (Grover et al., 2009)

Mathematically, one wishes to:

- clarify the basic definitions and relationships to known geometries,
- construct and classify examples in given categories. In particular, we will be looking for compact simply-connected torsion geometries with compatible complex structures.

Outline

1 Geometry

- Metric geometry with torsion

■ KT Geometry

- HKT Geometry

2 Twists
■ T-duality as a Twist Construction
3 Superconformal Symmetry
■ Superconformal Quantum Mechanics

- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure
- HKT Examples

■ Summary
4 Other Examples via the Twist

KT Geometry

$$
g, \nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c, \quad c \in \Lambda^{3} T^{*} M
$$

KT GEOMETRY

additionally

- I integrable complex structure
- $g(I X, I Y)=g(X, Y)$
- $\nabla I=0$

Two form $\omega_{I}(X, Y)=g(I X, Y)$

KT Geometry

$$
g, \nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c, \quad c \in \Lambda^{3} T^{*} M
$$

KT GEOMETRY

additionally

- I integrable complex structure
- $g(I X, I Y)=g(X, Y)$
- $\nabla I=0$

Two form $\omega_{I}(X, Y)=g(I X, Y)$
∇ is unique

$$
c=-I d \omega_{I}
$$

the Bismut connection

KT Geometry

$g, \nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c, \quad c \in \Lambda^{3} T^{*} M$

KT geometry

additionally

- I integrable complex structure
- $g(I X, I Y)=g(X, Y)$
- $\nabla I=0$

Two form $\omega_{I}(X, Y)=g(I X, Y)$
∇ is unique

$$
c=-I d \omega_{I}
$$

- KT geometry = Hermitian geometry + Bismut connection

■ $c=0$ is Kähler geometry
■ strong KT is $\partial \bar{\partial} \omega_{I}=0$

KT Geometry

$$
g, \nabla=\nabla^{\mathrm{LC}}+\frac{1}{2} c, \quad c \in \Lambda^{3} T^{*} M
$$

KT geometry

additionally

- I integrable complex structure
- $g(I X, I Y)=g(X, Y)$
- $\nabla I=0$

Two form $\omega_{I}(X, Y)=g(I X, Y)$
∇ is unique

$$
c=-I d \omega_{I}
$$

- KT geometry $=$ Hermitian geometry + Bismut connection

■ $c=0$ is Kähler geometry
■ strong KT is $\partial \bar{\partial} \omega_{I}=0$

> EXAMPLE
> $M^{6}=S^{3} \times S^{3}=S U(2) \times S U(2)$

GAUdUCHON (1991)

every compact Hermitian M^{4} is conformal to strong KT
the Bismut connection

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

- T-duality as a Twist Construction

3. Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure
- HKT Examples
- Summary

4 Other Examples via the Twist

HKT Geometry

HKT structure

(g, ∇, I, J, K) with

- (g, ∇, A) KT, $\quad A=I, J, K$
- $I J=K=-J I$
$c=-A d \omega_{A}$ independent of A

HKT Geometry

HKT structure

(g, ∇, I, J, K) with

- $(g, \nabla, A) \mathrm{KT}, \quad A=I, J, K$
- $I J=K=-J I$
$c=-A d \omega_{A}$ independent of A

Martín Cabrera and Swann (2008)

$$
I d \omega_{I}=J d \omega_{J}=K d \omega_{K}
$$

implies I, J, K integrable, so НКТ.

HKT Geometry

HKT structure

(g, ∇, I, J, K) with

- $(g, \nabla, A) \mathrm{KT}, \quad A=I, J, K$
- $I J=K=-J I$
$c=-A d \omega_{A}$ independent of A

Martín Cabrera and

Swann (2008)

Examples
Dim $4 T^{4}, \mathrm{~K} 3, S^{3} \times S^{1}$ (Boyer, 1988)

Dim 8 Hilbert schemes, $\operatorname{SU}(3)$, nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008)

$$
I d \omega_{I}=J d \omega_{J}=K d \omega_{K}
$$

implies I, J, K integrable, so HKT.

HKT Geometry

HKT structure

(g, ∇, I, J, K) with

- $(g, \nabla, A) \mathrm{KT}, \quad A=I, J, K$

■ $I J=K=-J I$
$c=-A d \omega_{A}$ independent of A

Martín Cabrera and

SWANN (2008)

$$
I d \omega_{I}=J d \omega_{J}=K d \omega_{K}
$$

implies I, J, K integrable, so HKT.

Examples
Dim $4 T^{4}$, K3, $S^{3} \times S^{1}$ (Boyer, 1988)

Dim 8 Hilbert schemes, SU(3), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008)

Compact, simply-connected examples which are neither hyperKähler nor homogeneous?

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

- T-duality as a Twist Construction

3 Superconformal Symmetry
■ Superconformal Quantum Mechanics

- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure
- HKT Examples
- Summary

4 Other Examples via the Twist

Four-dimensional inspiration

HyperKÄhler M^{4}

Strong HKT W^{4}

T duality

$$
\begin{gathered}
d s^{2}=V^{-1}(d \tau+\omega)^{2} \\
+V \gamma_{i j} d x^{i} d x^{j} \\
d V=*_{3} d \omega
\end{gathered}
$$

Four-dimensional inspiration

HyperKÄhler M^{4}

$$
\begin{gathered}
d s^{2}=V^{-1}(d \tau+\omega)^{2} \\
+V \gamma_{i j} d x^{i} d x^{j} \\
d V=*_{3} d \omega
\end{gathered}
$$

Strong HKT W^{4}

T duality

$$
\begin{gathered}
d s^{2}=V\left(d^{2} \tau+\gamma_{i j} d x^{i} d x^{j}\right) \\
c=-d \tau \wedge d \omega
\end{gathered}
$$

■ Gibbons, Papadopoulos, and Stelle, 1997

- Callan, Harvey, and Strominger, 1991

■ Bergshoeff, Hull, and Ortín, 1995

Four-dimensional inspiration

HyperKÄhler M^{4}

$$
\begin{gathered}
d s^{2}=V^{-1}(d \tau+\omega)^{2} \\
+V \gamma_{i j} d x^{i} d x^{j} \\
d V=*_{3} d \omega
\end{gathered}
$$

Strong HKT W^{4}

T duality

$$
\begin{gathered}
d s^{2}=V\left(d^{2} \tau+\gamma_{i j} d x^{i} d x^{j}\right) \\
c=-d \tau \wedge d \omega
\end{gathered}
$$

■ Gibbons, Papadopoulos, and Stelle, 1997

- Callan, Harvey, and Strominger, 1991

■ Bergshoeff, Hull, and Ortín, 1995
For circle actions have:

$$
R \leftrightarrow 1 / R \quad \text { and here } \quad W=\left(M / S^{1}\right) \times S^{1}
$$

T-duality as a Twist

■ X_{p} generating a n-torus action on M
■ $\left(P, \theta, Y_{q}\right) \xrightarrow{\pi} M$ an invariant principal T^{n}-bundle

T-duality as a Twist

■ X_{p} generating a n-torus action on M
■ $\left(P, \theta, Y_{q}\right) \xrightarrow{\pi} M$ an invariant principal T^{n}-bundle
■ $X_{p}^{\prime}=\tilde{X}_{p}+a_{p q} Y_{q}$ a lift of X_{p} generating a free torus
action, $\left.d a_{p q}=-X_{p}\right\lrcorner F_{q}^{\theta}$

T-duality as a Twist

■ X_{p} generating a n-torus action on M

- $\left(P, \theta, Y_{q}\right) \xrightarrow{\pi} M$ an invariant principal T^{n}-bundle
■ $X_{p}^{\prime}=\tilde{X}_{p}+a_{p q} Y_{q}$ a lift of X_{p} generating a free torus action, $\left.d a_{p q}=-X_{p}\right\lrcorner F_{q}^{\theta}$

Definition

A twist W of M with respect to X_{p} is

$$
W:=P /\left\langle X_{p}^{\prime}\right\rangle
$$

T-duality as a Twist

■ X_{p} generating a n-torus action on M

- $\left(P, \theta, Y_{q}\right) \xrightarrow{\pi} M$ an invariant principal T^{n}-bundle
- $X_{p}^{\prime}=\tilde{X}_{p}+a_{p q} Y_{q}$ a lift of X_{p} generating a free torus action, $\left.d a_{p q}=-X_{p}\right\lrcorner F_{q}^{\theta}$

DEFINITION

A twist W of M with respect to X_{p} is

$$
W:=P /\left\langle X_{p}^{\prime}\right\rangle
$$

- Transverse locally free lifts always exist for $\left.X_{p}\right\lrcorner F_{q}^{\theta}$ exact.

■ W is at worst an orbifold.

T-duality as a Twist

■ X_{p} generating a n-torus action on M
■ $\left(P, \theta, Y_{q}\right) \xrightarrow{\pi} M$ an invariant principal T^{n}-bundle

- $X_{p}^{\prime}=\tilde{X}_{p}+a_{p q} Y_{q}$ a lift of X_{p} generating a free torus action, $\left.d a_{p q}=-X_{p}\right\lrcorner F_{q}^{\theta}$

Definition

A twist W of M with respect to X_{p} is

$$
W:=P /\left\langle X_{p}^{\prime}\right\rangle
$$

- Transverse locally free lifts always exist for $\left.X_{p}\right\lrcorner F_{q}^{\theta}$ exact.
- W is at worst an orbifold.

Dually

M is a twist of W with respect to $X_{q}^{W}=\left(\pi_{W}\right)_{*} Y_{q}$, $\theta_{p}^{W}=\left(a^{-1}\right)^{p q} \theta_{q}$

DEFINITION

Tensors α on α_{W} on M and W are \mathcal{H}-related, $\alpha_{W} \sim_{\mathcal{H}} \alpha$ if their pull-backs agree on $\mathcal{H}=\operatorname{ker} \theta$

Move invariant geometry from M to W by using the corresponding \mathcal{H}-related tensors

$$
g_{W} \sim_{\mathcal{H}} g, \quad \omega_{I}^{W} \sim_{\mathcal{H}} \omega_{I}, \quad \text { etc. }
$$

DEFINITION

Tensors α on α_{W} on M and W are \mathcal{H}-related, $\alpha_{W} \sim_{\mathcal{H}} \alpha$ if their pull-backs agree on $\mathcal{H}=\operatorname{ker} \theta$

Move invariant geometry from M to W by using the corresponding \mathcal{H}-related tensors

$$
g_{W} \sim_{\mathcal{H}} g, \quad \omega_{I}^{W} \sim_{\mathcal{H}} \omega_{I}, \quad \text { etc. }
$$

For invariant forms

$$
\left.d \alpha_{W} \sim_{\mathcal{H}} d \alpha-F_{q}^{\theta} \wedge\left(a^{-1}\right)^{p q} X_{q}\right\lrcorner \alpha
$$

For the KT torsion form $c=-I d \omega_{I}$:

$$
c_{W} \sim_{\mathcal{H}} c-\left(a^{-1}\right)^{p q} I F_{q}^{\theta} \wedge X^{p}
$$

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Thists

- T-duality as a Twist Construction

3 Superconformal Symmetry
■ Superconformal Quantum Mechanics

- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure
- HKT Examples
- Summary

4 Other Examples via the Twist

Superconformal Quantum Mechanics

N particles in 1 dimension

$$
H=\frac{1}{2} P_{a}^{*} g^{a b} P_{b}+V(x)
$$

Standard quantisation

$$
P_{a} \sim-i \frac{\partial}{\partial x^{a}}, \quad a=1, \ldots, N
$$

Superconformal Quantum Mechanics

N particles in 1 dimension
Standard quantisation

$$
H=\frac{1}{2} P_{a}^{*} g^{a b} P_{b}+V(x) \quad P_{a} \sim-i \frac{\partial}{\partial x^{a}}, \quad a=1, \ldots, N
$$

Michelson and Strominger (2000); Papadopoulos (2000)

■ operator D with $[D, H]=2 i H \Longleftrightarrow$ vector field X with $L_{X} g=2 g \& L_{X} V=-2 V$
■ K so $\operatorname{span}\{i H, i D, i K\} \cong \mathfrak{s l}(2, \mathbb{R}) \Longleftrightarrow X^{b}=g(X, \cdot)$ is closed

- then $K=\frac{1}{2} g(X, X)$.

Choose a superalgebra containing $\mathfrak{s l}(2, \mathbb{R})$ in its even part.

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Tuists

- T-duality as a Twist Construction

3 Superconformal Symmetry

- Superconformal Quantum Mechanics

■ The Superalgebras $D(2,1 ; \alpha)$

- Geometric Structure
- HKT Examples
- Summary

4 Other Examples via the Twist

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one
continuous family
$D(2,1 ; \alpha)$

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one
continuous family
$D(2,1 ; \alpha)$
■ $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one
continuous family
$D(2,1 ; \alpha)$

- $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$
- $\mathfrak{g}_{0}=$
$\mathfrak{s l}(2, \mathrm{C})+\mathfrak{s l}(2, \mathrm{C})_{+}+\mathfrak{s l}(2, \mathrm{C})_{-}$
- $\mathfrak{g}_{1}=\mathbf{C}^{2} \otimes \mathbf{C}_{+}^{2} \otimes \mathbf{C}_{-}^{2}=\mathrm{C}_{\mathrm{Q}}^{4}+\mathrm{C}_{S}^{4}$

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one
continuous family

$D(2,1 ; \alpha)$

- $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$
- $\mathfrak{g}_{0}=$
$\mathfrak{s l}(2, \mathbb{C})+\mathfrak{s l l}(2, \mathbb{C})_{+}+\mathfrak{s l}(2, \mathbb{C})_{-}$
- $\mathfrak{g}_{1}=\mathbb{C}^{2} \otimes \mathbb{C}_{+}^{2} \otimes \mathbb{C}_{-}^{2}=\mathbb{C}_{Q}^{4}+\mathbb{C}_{S}^{4}$
- $\left[S^{a}, Q^{a}\right]=D$,
- $\left[S^{1}, Q^{2}\right]=-\frac{4 \alpha}{1+\alpha} R_{+}^{3}-\frac{4}{1+\alpha} R_{-}^{3}$

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one
continuous family

$D(2,1 ; \alpha)$

■ $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$

- $\mathfrak{g}_{0}=$
$\mathfrak{s l}(2, \mathbb{C})+\mathfrak{s l l}(2, \mathbb{C})_{+}+\mathfrak{s l}(2, \mathbb{C})_{-}$
- $\mathfrak{g}_{1}=\mathbb{C}^{2} \otimes \mathbb{C}_{+}^{2} \otimes \mathbb{C}_{-}^{2}=\mathbb{C}_{Q}^{4}+\mathbb{C}_{S}^{4}$

■ $\left[S^{a}, Q^{a}\right]=D$,

- $\left[S^{1}, Q^{2}\right]=-\frac{4 \alpha}{1+\alpha} R_{+}^{3}-\frac{4}{1+\alpha} R_{-}^{3}$

Simple for $\alpha \neq-1,0, \infty$.

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one continuous family

$D(2,1 ; \alpha)$

$\square \mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$

- $\mathfrak{g}_{0}=$
$\mathfrak{s l}(2, \mathbb{C})+\mathfrak{s l}(2, \mathbb{C})_{+}+\mathfrak{s l}(2, \mathbb{C})_{-}$
- $\mathfrak{g}_{1}=\mathbb{C}^{2} \otimes \mathbb{C}_{+}^{2} \otimes \mathbb{C}_{-}^{2}=\mathbb{C}_{Q}^{4}+\mathbb{C}_{S}^{4}$
- $\left[S^{a}, Q^{a}\right]=D$,
- $\left[S^{1}, Q^{2}\right]=-\frac{4 \alpha}{1+\alpha} R_{+}^{3}-\frac{4}{1+\alpha} R_{-}^{3}$
- Over \mathbb{C}, isomorphisms between the cases
$\alpha^{ \pm 1},-(1+\alpha)^{ \pm 1}$, $-(\alpha /(1+\alpha))^{ \pm 1}$.

Simple for $\alpha \neq-1,0, \infty$.

The Superalgebras $D(2,1 ; \alpha)$

The classification of simple Lie
superalgebras contains one continuous family

$D(2,1 ; \alpha)$

- $\mathfrak{g}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$
- $\mathfrak{g}_{0}=$

$$
\mathfrak{s l}(2, \mathbb{C})+\mathfrak{s l l}(2, \mathbb{C})_{+}+\mathfrak{s l}(2, \mathbb{C})_{-}
$$

- $\mathfrak{g}_{1}=\mathbb{C}^{2} \otimes \mathbb{C}_{+}^{2} \otimes \mathbb{C}_{-}^{2}=\mathbb{C}_{Q}^{4}+\mathbb{C}_{S}^{4}$
- $\left[S^{a}, Q^{a}\right]=D$,
- $\left[S^{1}, Q^{2}\right]=-\frac{4 \alpha}{1+\alpha} R_{+}^{3}-\frac{4}{1+\alpha} R_{-}^{3}$
- Over \mathbb{C}, isomorphisms between the cases
$\alpha^{ \pm 1},-(1+\alpha)^{ \pm 1}$, $-(\alpha /(1+\alpha))^{ \pm 1}$.
- Real form
$\mathfrak{g}_{0}=\mathfrak{s l}(2, \mathbb{R})+$ $\mathfrak{s u}(2)_{+}+\mathfrak{s u}(2)_{-}$.
- Over \mathbb{R}, isomorphisms for $\alpha^{ \pm 1}$

Simple for $\alpha \neq-1,0, \infty$.

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Tyitsts

- T-duality as a Twist Construction

3 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure
- HKT Examples
- Summary

4. Other Examples via the Twist

Superconformal Geometry

HKT MANIFOLD M

with X a special homothety of type (a, b)

- $L_{X} g=a g$,
- $L_{I X} J=b K$,
- $L_{X} I=0, L_{I X} I=0, \ldots$

Superconformal Geometry

$\mathcal{N}=4 B$ QUANTUM MECHANICS
 with $D(2,1 ; \alpha)$ superconformal symmetry

- $\alpha=\frac{a}{b}-1$
- Action of $\mathbb{R} \times \operatorname{SU}(2)$ rotating I, J, K

HKT Manifold M

with X a special homothety of type (a, b)

- $L_{X} g=a g$,
- $L_{I X} J=b K$,
- $L_{X} I=0, L_{I X} I=0, \ldots$

Superconformal Geometry

$\mathcal{N}=4 B$ QUANTUM MECHANICS
with $D(2,1 ; \alpha)$ superconformal symmetry

- $\alpha=\frac{a}{b}-1$
- Action of $\mathbb{R} \times S U(2)$ rotating I, J, K

HKT MANIFOLD M

with X a special homothety of type (a, b)

$$
\begin{aligned}
& L_{X} g=a g \\
& L_{I X} J=b K \\
& L_{X} I=0, L_{I X} I=0, \ldots
\end{aligned}
$$

For $a \neq 0$

- M is non-compact
- $\mu=\frac{2}{a(a-b)}\|X\|^{2}$ is an HKT potential

$$
\omega_{I}=\frac{1}{2}\left(d d_{I}+d_{J} d_{K}\right) \mu=\frac{1}{2}(1-J) d I d \mu
$$

Superconformal Geometry II

Example
 $$
\begin{aligned} & M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\ & a=2, b=-2, \alpha=-2 \end{aligned}
$$

Superconformal Geometry II

Example

$$
\begin{aligned}
& M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\
& a=2, b=-2, \alpha=-2
\end{aligned}
$$

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / S U(2)$ a QKT orbifold (of special type).

Superconformal Geometry II

Example

$$
\begin{aligned}
& M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\
& a=2, b=-2, \alpha=-2
\end{aligned}
$$

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / S U(2)$ a QKT orbifold (of special type).
E.g. $Q=k \mathbb{C P}(2)$.

Superconformal Geometry II

Example

$M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n)$
$a=2, b=-2, \alpha=-2$.

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / S U(2)$ a QKT orbifold (of special type).
E.g. $Q=k \mathbb{C P}(2)$.

For S 3-Sasaki, $M=S \times \mathbb{R}$ warped product, is
hyperKähler with special homothety $\alpha=-2$

Superconformal Geometry II

Example

$$
\begin{aligned}
& M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\
& a=2, b=-2, \alpha=-2
\end{aligned}
$$

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times \operatorname{SU}(2))=$ $\mu^{-1}(1) / S U(2)$ a QKT orbifold (of special type).
E.g. $Q=k \mathbb{C P}(2)$.

For S 3-Sasaki, $M=S \times \mathbb{R}$ warped product, is
hyperKähler with special homothety $\alpha=-2$

Get to $a=0$, special isometry, by potential change

$$
g_{1}=\frac{1}{\mu} g-\frac{1}{2 \mu^{2}}\left(d^{\mathrm{H}} \mu\right)^{2}
$$

Superconformal Geometry II

Example

$$
\begin{aligned}
& M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\
& a=2, b=-2, \alpha=-2
\end{aligned}
$$

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / S U(2)$ a QKT orbifold (of special type).
E.g. $Q=k \mathbb{C P}(2)$.

For S 3-Sasaki, $M=S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha=-2$

Get to $a=0$, special isometry, by potential change

$$
g_{1}=\frac{1}{\mu} g-\frac{1}{2 \mu^{2}}\left(d^{\mathbb{H}} \mu\right)^{2}
$$

Discrete quotient

$$
M=\left(\mu^{-1}(1) \times \mathbb{R}\right) / \mathbb{Z}(\varphi, 2)
$$

with g_{1} is HKT with special isometry X

Superconformal Geometry II

Example

$$
\begin{aligned}
& M=\mathbb{H}^{n+1} \backslash\{0\} \rightarrow \mathbb{H P}(n) \\
& a=2, b=-2, \alpha=-2
\end{aligned}
$$

Poon and Swann (2003)

$a \neq 0$ corresponds to
$Q=M /(\mathbb{R} \times S U(2))=$ $\mu^{-1}(1) / S U(2)$ a QKT orbifold (of special type).
E.g. $Q=k \mathbb{C P}(2)$.

For S 3-Sasaki, $M=S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha=-2$

Get to $a=0$, special isometry, by potential change

$$
g_{1}=\frac{1}{\mu} g-\frac{1}{2 \mu^{2}}\left(d^{\mathbb{H}} \mu\right)^{2}
$$

Discrete quotient

$$
M=\left(\mu^{-1}(1) \times \mathbb{R}\right) / \mathbb{Z}(\varphi, 2)
$$

with g_{1} is HKT with special isometry X

In this case

- $d X^{b}=0$
- $b_{1}(M) \geqslant 1$

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Tuists

- T-duality as a Twist Construction

3 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$
- Geometric Structure
- HKT Examples
- Summary

4 Other Examples via the Twist

Twisting HKT

Twist by

$$
g_{W} \sim_{\mathcal{H}} g, \quad \omega_{I}^{W} \sim_{\mathcal{H}} \omega_{I}, \text { etc. }
$$

Twisting HKT

Twist by

$$
g_{W} \sim_{\mathcal{H}} g, \quad \omega_{I}^{W} \sim_{\mathcal{H}} \omega_{I}, \text { etc. }
$$

Then

$$
I d \omega_{I}^{W} \sim_{\mathcal{H}} I d \omega_{I}+\frac{1}{a} X^{b} \wedge I \omega_{\theta}
$$

For HKT need

$$
c=-I d \omega_{I}=-J d \omega_{J}=-K d \omega_{K}
$$

Twisting HKT

Twist by
$g_{W} \sim_{\mathcal{H}} g, \quad \omega_{I}^{W} \sim_{\mathcal{H}} \omega_{I}$, etc.
Then

$$
I d \omega_{I}^{W} \sim_{\mathcal{H}} I d \omega_{I}+\frac{1}{a} X^{b} \wedge I \omega_{\theta}
$$

For HKT need
$c=-I d \omega_{I}=-J d \omega_{J}=-K d \omega_{K}$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^{2} E=\bigcap_{I} \Lambda_{I}^{1,1}$, i.e., an instanton

Twisting HKT

Twist by

$$
g_{W} \sim_{\mathcal{H}} g, \quad \omega_{I}^{W} \sim_{\mathcal{H}} \omega_{I}, \text { etc. }
$$

Then

$$
I d \omega_{I}^{W} \sim_{\mathcal{H}} I d \omega_{I}+\frac{1}{a} X^{b} \wedge I \omega_{\theta}
$$

For HKT need
$c=-I d \omega_{I}=-J d \omega_{J}=-K d \omega_{K}$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^{2} E=\bigcap_{I} \Lambda_{I}^{1,1}$, i.e., an instanton
X a special isometry, $X\lrcorner F_{\theta}=0$ twists to X_{W} a special isometry

Twisting HKT

Twist by
$g_{W} \sim_{\mathcal{H}} g, \quad \omega_{I}^{W} \sim_{\mathcal{H}} \omega_{I}$, etc.
Then
$I d \omega_{I}^{W} \sim_{\mathcal{H}} I d \omega_{I}+\frac{1}{a} X^{b} \wedge I \omega_{\theta}$
For HKT need
$c=-I d \omega_{I}=-J d \omega_{J}=-K d \omega_{K}$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^{2} E=\bigcap_{I} \Lambda_{I}^{1,1}$, i.e., an instanton
X a special isometry, $X\lrcorner F_{\theta}=0$ twists to X_{W} a special isometry

Theorem

M HKT with special isometry ($\alpha=-1$). Can

- untwist locally to $d X^{b}=0$ on $S \times S^{1}$
- change potential on $S \times \mathbb{R}$ to $a \neq 0,(\alpha=-2)$

Twisting HKT

Twist by
$g_{W} \sim_{\mathcal{H}} g, \quad \omega_{I}^{W} \sim_{\mathcal{H}} \omega_{I}$, etc.
Then
$I d \omega_{I}^{W} \sim_{\mathcal{H}} I d \omega_{I}+\frac{1}{a} X^{b} \wedge I \omega_{\theta}$
For HKT need
$c=-I d \omega_{I}=-J d \omega_{J}=-K d \omega_{K}$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^{2} E=\bigcap_{I} \Lambda_{I}^{1,1}$, i.e., an instanton
X a special isometry, $X\lrcorner F_{\theta}=0$ twists to X_{W} a special isometry

Theorem

M HKT with special isometry ($\alpha=-1$). Can

- untwist locally to $d X^{b}=0$ on $S \times S^{1}$
- change potential on $S \times \mathbb{R}$ to $a \neq 0,(\alpha=-2)$
$F_{\theta}=d X^{b}$ is an instanton

Twisting HKT

Twist by
$g_{W} \sim_{\mathcal{H}} g, \quad \omega_{I}^{W} \sim_{\mathcal{H}} \omega_{I}$, etc.
Then

$$
I d \omega_{I}^{W} \sim_{\mathcal{H}} I d \omega_{I}+\frac{1}{a} X^{b} \wedge I \omega_{\theta}
$$

For HKT need
$c=-I d \omega_{I}=-J d \omega_{J}=-K d \omega_{K}$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^{2} E=\bigcap_{I} \Lambda_{I}^{1,1}$, i.e., an instanton
X a special isometry, $X\lrcorner F_{\theta}=0$ twists to X_{W} a special isometry

Theorem

M HKT with special isometry ($\alpha=-1$). Can

- untwist locally to $d X^{b}=0$ on $S \times S^{1}$
- change potential on $S \times \mathbb{R}$ to $a \neq 0,(\alpha=-2)$
$F_{\theta}=d X^{b}$ is an instanton
Many simply-connected examples when $b_{2}(S) \geqslant 1$ E.g., $Q=k \mathbb{C P}(2)$

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Tyitsts

- T-duality as a Twist Construction

3 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2,1 ; \alpha)$

■ Geometric Structure

- HKT Examples

■ Summary
4 Other Examples via the Twist

Summary

■ $D(2,1 ; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times \operatorname{SU}(2)$ action

Summary

■ $D(2,1 ; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times S U(2)$ action
■ $\alpha \neq-1$ comes from $\mathbb{R} \times S O(3)$ bundles over certain QKT orbifolds

Summary

■ $D(2,1 ; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times S U(2)$ action
■ $\alpha \neq-1$ comes from $\mathbb{R} \times S O(3)$ bundles over certain QKT orbifolds
■ $\alpha=-1$ comes from previous examples via change of potential and twist

Summary

■ $D(2,1 ; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times \operatorname{SU}(2)$ action
■ $\alpha \neq-1$ comes from $\mathbb{R} \times S O(3)$ bundles over certain QKT orbifolds

■ $\alpha=-1$ comes from previous examples via change of potential and twist

- construct non-homogeneous compact simply-connected examples with $\alpha=-1$

General HKT with Torus Symmetry

- $M=N_{1} \times N_{2}$
- N_{2} with an HKT torus symmetry X_{p}

■ $\left[F_{q}^{\theta}\right] \in H^{2}\left(N_{1}, \mathbb{Z}\right), F_{q}^{\theta} \in S^{2} E$ instanton

General HKT with Torus Symmetry

- $M=N_{1} \times N_{2}$
- N_{2} with an HKT torus symmetry X_{p}
- $\left[F_{q}^{\theta}\right] \in H^{2}\left(N_{1}, \mathbb{Z}\right), F_{q}^{\theta} \in S^{2} E$ instanton

Twists to $N_{2} \rightarrow W \rightarrow N_{1}$ HKT with torus symmetry

General HKT with Torus Symmetry

■ $M=N_{1} \times N_{2}$

- N_{2} with an HKT torus symmetry X_{p}

■ $\left[F_{q}^{\theta}\right] \in H^{2}\left(N_{1}, \mathbb{Z}\right), F_{q}^{\theta} \in S^{2} E$ instanton
Twists to $N_{2} \rightarrow W \rightarrow N_{1}$ HKT with torus symmetry

Example

N_{1} a K3 surface
$N_{2}=G$ compact Lie $\operatorname{dim}=4 k$ or $N_{2}=S \times S^{1}, S 3$-Sasaki
F_{θ} self-dual, primitive
Generate:
■ large number of simply-connected examples, including new examples with reduced holonomy;
■ all examples on compact nilmanifolds, N_{i} tori.

Hypercomplex vs. HKT

Theorem (Swann (2008))

There is a simply-connected T^{4}-bundle M over a K3 surface N that admits integrable I, J and K, but no compatible HKT metric.

This is constructed as a twist of $T^{4} \times N$ using F_{q}^{θ} not of instanton type, but chosen so that integrability of the complex structures is preserved.

References I

M. L. Barberis and A. Fino. New strong HKT manifolds arising from quaternionic representations, May 2008. eprint arXiv:0805. 2335 [math.DG].
E. Bergshoeff, C. Hull, and T. Ortín. Duality in the type-II superstring effective action. Nuclear Phys. B, 451(3):547-575, 1995. ISSN 0550-3213.
C. P. Boyer. A note on hyperHermitian four-manifolds. Proc. Amer. Math. Soc., 102:157-164, 1988.
C. G. Callan, Jr., J. A. Harvey, and A. Strominger. Worldsheet approach to heterotic instantons and solitons. Nuclear Phys. B, 359(2-3):611-634, 1991. ISSN 0550-3213.

References II

R. A. Coles and G. Papadopoulos. The geometry of the one-dimensional supersymmetric nonlinear sigma models. Classical Quantum Gravity, 7(3):427-438, 1990. ISSN 0264-9381.
P. Gauduchon. Structures de Weyl et théorèmes d'annulation sur une varété conforme autoduale. Ann. Sc. Norm. Sup. Pisa, 18:563-629, 1991.
G. W. Gibbons, G. Papadopoulos, and K. S. Stelle. HKT and OKT geometries on soliton black hole moduli spaces. Nuclear Phys. B, 508(3):623-658, 1997. ISSN 0550-3213.
Jai Grover, Jan B. Gutowski, Carlos A. R. Herdeiro, and Wafic Sabra. HKT geometry and de Sitter supergravity. Nuclear Phys. B, 809(3):406-425, 2009. ISSN 0550-3213. doi: 10.1016/j.nuclphysb.2008.08.024. URL http://dx.doi.org/10.1016/j.nuclphysb.2008.08.024.

References III

C. M. Hull. The geometry of supersymmetric quantum mechanics, October 1999. eprint arXiv:hep-th/9910028.
F. Martín Cabrera and A. F. Swann. The intrinsic torsion of almost quaternion-hermitian manifolds. Ann. Inst. Fourier, 58(5):1455-1497, 2008. ISSN 0373-0956.
J. Michelson and A. Strominger. The geometry of (super) conformal quantum mechanics. Comm. Math. Phys., 213(1): 1-17, 2000. ISSN 0010-3616.
G. Papadopoulos. Conformal and superconformal mechanics. Classical Quantum Gravity, 17(18):3715-3741, 2000. ISSN 0264-9381.
Y. S. Poon and A. F. Swann. Superconformal symmetry and hyperKähler manifolds with torsion. Commun. Math. Phys., 241(1):177-189, 2003.

References IV

A. Strominger. Superstrings with torsion. Nuclear Phys. B, 274 (2):253-284, 1986. ISSN 0550-3213.
A. F. Swann. Twisting Hermitian and hypercomplex geometries. in preparation, 2008.
M. Verbitsky. Hyperkähler manifolds with torsion obtained from hyperholomorphic bundles, March 2003. eprint arXiv:math.DG/0303129.

