Geometric Duality

Andrew Swann

IMADA / CP³-Origins University of Southern Denmark swann@imada.sdu.dk

November 2009 / Odense

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

Outline

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

T-duality as a Twist Construction

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

OUTLINE

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

- T-duality as a Twist Construction
- **3** SUPERCONFORMAL SYMMETRY
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure
 - HKT Examples
 - Summary

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

OUTLINE

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

- T-duality as a Twist Construction
- **3** SUPERCONFORMAL SYMMETRY
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure
 - HKT Examples
 - Summary

4 Other Examples via the Twist

Geometry from supersymmetry

CLASSICAL GEOMETRIES

■ Riemannian/Lorentzian metric $g = (g_{ij})$, has a unique covariant derivative ∇^{LC} , Levi-Civita connection, that is metric $\nabla^{\text{LC}}g = 0$ and torsion-free $\nabla^{\text{LC}}_X Y - \nabla^{\text{LC}}_Y X = [X, Y]$:

$$2g(\nabla_X^{\text{LC}}Y,Z) = Xg(Y,Z) + Yg(X,Z) - Zg(X,Y) + g([X,Y],Z) + g([Z,X],Y) + g(X,[Z,Y]);$$
$$\nabla_{\frac{\partial}{\partial x^i}}^{\text{LC}} \frac{\partial}{\partial x^j} = \Gamma_{ij}^k \frac{\partial}{\partial x^k}, \qquad \Gamma_{ij}^k = \frac{1}{2}g^{k\ell}(g_{\ell i,j} + g_{j\ell,i} - g_{ij,\ell}) = \Gamma_{ji}^k.$$

Supersymmetry: usually parallel complex structures $J = (J_t^{j})$:

$$g(JX, JY) = g(X, Y), \qquad J^{2} = -1, \qquad \nabla^{\text{LC}}J = 0; \\ J_{i}^{\ell}J_{j}^{k}g_{\ell k} = g_{ij}, \qquad J_{i}^{j}J_{j}^{k} = -\delta_{i}^{k}, \qquad J_{i}^{k}{}_{,j} = \Gamma_{ij}^{\ell}J_{\ell}^{k}.$$

One complex structure

- Kähler geometry: Riemann surfaces, $\mathbb{CP}(n)$, projective varieties $X = \bigcap_i (f_i = 0) \subset \mathbb{CP}(n)$, Hermitian symmetric spaces,...
- Calabi-Yau manifolds, Kähler with $c_1 = 0$: have Ric $\equiv 0$ so Einstein; $X = (f = 0) \subset \mathbb{CP}(n)$, deg f = n + 1; K3
 - surface $(x^4 + y^4 + z^4 + w^4 = 0) \subset \mathbb{CP}(3)$.

Multiple complex structures

• HyperKähler geometry *I*, *J*, *K*, *IJ* = K = -JI: are Calabi-Yau; K3 surfaces, $T^{4k} = \mathbb{R}^{4k} / \mathbb{Z}^{4k}$; Hilbert schemes; instanton moduli;...

HOLONOMY CLASSIFICATION (Berger,...) essentially only get products of the above examples

OUTLINE

1 Geometry

Metric geometry with torsion

- KT Geometry
- HKT Geometry

T-duality as a Twist Construction

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure
- HKT Examples

Summary

4 OTHER EXAMPLES VIA THE TWIST

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

TORSION GEOMETRY

Metric geometry with torsion

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

TORSION GEOMETRY

Metric geometry with torsion

$$\begin{aligned} \nabla_{\frac{\partial}{\partial x^{i}}} & \frac{\partial}{\partial x^{j}} = \gamma_{ij}^{k} \frac{\partial}{\partial x^{k}}, \\ T_{ij}^{\ell} & = \gamma_{[ij]}^{k}, \\ c_{ijk} & = c_{[ijk]} = g_{\ell k} T_{ij}^{\ell}, \end{aligned}$$

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

TORSION GEOMETRY

Metric geometry with torsion

- metric *g*, connection ∇ , torsion $T^{\nabla}(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$ ■ $\nabla g = 0$ = $a(X, Y, Z) = a(T^{\nabla}(X, Y), Z)$
- $c(X, Y, Z) = g(T^{\nabla}(X, Y), Z)$ a three-form

$$\begin{split} \nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}} &= \gamma_{ij}^{k} \frac{\partial}{\partial x^{k}}, \\ T_{ij}^{\ell} &= \gamma_{[ij]}^{k}, \\ c_{ijk} &= c_{[ijk]} = g_{\ell k} T_{ij}^{\ell}, \end{split}$$

$$\nabla = \nabla^{\text{LC}} + \frac{1}{2}c$$
$$\gamma^k_{ij} = \Gamma^k_{ij} + \frac{1}{2}c_{ijk}$$

- Any $c \in \Omega^3(M)$ will do.
- ∇, ∇^{LC} have the same geodesics (dynamics).
- The geometry is strong if dc = 0.

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の ○ ○

Such geometries with extra structure from supersymmetry arise from:

- Wess-Zumino terms in the Lagrangian, superstrings with torsion, B-fields (Strominger, 1986)
- One-dimensional quantum mechanics with type B supersymmetry, blackhole dynamics and moduli (Michelson and Strominger, 2000; Coles and Papadopoulos, 1990; Hull, 1999; Gibbons et al., 1997)
- Constructions in supergravity (Grover et al., 2009)

Mathematically, one wishes to:

- clarify the basic definitions and relationships to known geometries,
- construct and classify examples in given categories.

In particular, we will be looking for *compact* simply-connected torsion geometries with compatible complex structures.

OUTLINE

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

- T-duality as a Twist Construction
- **3** SUPERCONFORMAL SYMMETRY
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure
 - HKT Examples
 - Summary

4 Other Examples via the Twist

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

KT Geometry

$$g, \nabla = \nabla^{\text{lc}} + \frac{1}{2}c, \quad c \in \Lambda^3 T^*M$$

KT geometry

- additionally
 - *I* integrable complex structure

$$g(IX, IY) = g(X, Y)$$

• $\nabla I = 0$

Two form $\omega_I(X, Y) = g(IX, Y)$

◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

KT Geometry

$$g, \nabla = \nabla^{\scriptscriptstyle
m LC} + rac{1}{2}c, \ \ c \in \Lambda^3 T^*M$$

KT geometry

- additionally
 - *I* integrable complex structure

$$g(IX, IY) = g(X, Y)$$

 $\bullet \nabla I = 0$

Two form $\omega_I(X, Y) = g(IX, Y)$

∇ is unique

$$c = -Id\omega_I$$

Metric KT HKT

KT Geometry

$$g, \nabla = \nabla^{\scriptscriptstyle
m LC} + rac{1}{2}c, \ \ c \in \Lambda^3 T^*M$$

KT geometry

- additionally
 - *I* integrable complex structure

$$g(IX, IY) = g(X, Y)$$

• $\nabla I = 0$

Two form $\omega_I(X, Y) = g(IX, Y)$

∇ is unique

$$c = -Id\omega_I$$

the Bismut connection

- KT geometry = Hermitian geometry + Bismut connection
- c = 0 is Kähler geometry

• strong KT is $\partial \bar{\partial} \omega_I = 0$

KT Geometry

$$g, \nabla = \nabla^{\scriptscriptstyle
m LC} + rac{1}{2}c, \ \ c \in \Lambda^3 T^*M$$

KT geometry

additionally

I integrable complex structure

$$g(IX, IY) = g(X, Y)$$

• $\nabla I = 0$

Two form $\omega_I(X, Y) = g(IX, Y)$

∇ is unique

$$c = -Id\omega_I$$

the Bismut connection

KT geometry = Hermitian geometry + Bismut connection

- c = 0 is Kähler geometry
- strong KT is $\partial \bar{\partial} \omega_I = 0$

EXAMPLE

METRIC KT HKT

$$M^6 = S^3 \times S^3 = SU(2) \times SU(2)$$

GAUDUCHON (1991)

every compact Hermitian M^4 is conformal to strong KT

ANDREW SWANN

OUTLINE

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

- T-duality as a Twist Construction
- **3** SUPERCONFORMAL SYMMETRY
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure
 - HKT Examples
 - Summary

4 Other Examples via the Twist

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

Metric KT HKT

HKT Geometry

HKT STRUCTURE

$$(g, \nabla, I, J, K)$$
 with
 (g, ∇, A) KT, $A = I, J, K$
 $IJ = K = -JI$

 $c = -Ad\omega_A$ independent of A

ANDREW SWANN GEOMETRIC DUALITY

◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

Metric KT HKT

HKT Geometry

HKT STRUCTURE

$$(g, \nabla, I, J, K)$$
 with
 (g, ∇, A) KT, $A = I, J, K$
 $IJ = K = -JI$

 $c = -Ad\omega_A$ independent of A

Martín Cabrera and Swann (2008)

$$Id\omega_I = Jd\omega_I = Kd\omega_K$$

implies *I*, *J*, *K* integrable, so HKT.

◆□▶ ◆□▶ ◆ □ ▶ ★ □ ▶ ● □ ■ ● ● ●

HKT Geometry

HKT STRUCTURE

$$(g, \nabla, I, J, K)$$
 with
 (g, ∇, A) KT, $A = I, J, K$
 $IJ = K = -JI$

 $c = -Ad\omega_A$ independent of A

Martín Cabrera and Swann (2008)

$$Id\omega_I = Jd\omega_J = Kd\omega_K$$

implies *I*, *J*, *K* integrable, so HKT.

Examples DIM 4 T^4 , K3, $S^3 \times S^1$ (Boyer, 1988) DIM 8 Hilbert schemes, SU(3), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008)

HKT Geometry

HKT STRUCTURE

$$(g, \nabla, I, J, K)$$
 with
 (g, ∇, A) KT, $A = I, J, K$
 $IJ = K = -JI$

 $c = -Ad\omega_A$ independent of A

Martín Cabrera and Swann (2008)

$$Id\omega_I = Jd\omega_I = Kd\omega_K$$

implies *I*, *J*, *K* integrable, so HKT.

Examples DIM 4 T^4 , K3, $S^3 \times S^1$ (Boyer, 1988)

DIM 8 Hilbert schemes, *SU*(3), nilmanifolds, vector bundles over discrete groups (Verbitsky, 2003; Barberis and Fino, 2008)

Compact, simply-connected examples which are neither hyperKähler nor homogeneous?

OUTLINE

Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

T-duality as a Twist Construction

- **3** SUPERCONFORMAL SYMMETRY
 - Superconformal Quantum Mechanics
 - The Superalgebras $D(2, 1; \alpha)$
 - Geometric Structure
 - HKT Examples
 - Summary

4 Other Examples via the Twist

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

FOUR-DIMENSIONAL INSPIRATION

HyperKähler M^4

$$ds^{2} = V^{-1}(d\tau + \omega)^{2}$$
$$+ V\gamma_{ij}dx^{i}dx^{j}$$
$$dV = *_{3}d\omega$$

T duality

$$\overbrace{\text{on}}_{X = \frac{\partial}{\partial \tau}} ds^{2} = V(d^{2}\tau + \gamma_{ij}dx^{i}dx^{j})$$

$$c = -d\tau \wedge d\omega$$

ANDREW SWANN GEOMETRIC DUALITY

FOUR-DIMENSIONAL INSPIRATION

- Gibbons, Papadopoulos, and Stelle, 1997
- Callan, Harvey, and Strominger, 1991
- Bergshoeff, Hull, and Ortín, 1995

FOUR-DIMENSIONAL INSPIRATION

HyperKähler M^4		Strong HKT W ⁴
$ds^2 = V^{-1}(d au + \omega)^2 + V\gamma_{ij}dx^i dx^j dV = *_3 d\omega$	$T \text{ duality}$ \longleftrightarrow On $X = \frac{\partial}{\partial \tau}$	$ds^2 = V(d^2\tau + \gamma_{ij}dx^i dx^j)$ $c = -d\tau \wedge d\omega$

- Gibbons, Papadopoulos, and Stelle, 1997
- Callan, Harvey, and Strominger, 1991
- Bergshoeff, Hull, and Ortín, 1995

For circle actions have:

$$R \leftrightarrow 1/R$$
 and here $W = (M/S^1) \times S^1$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

T-duality as a Twist

- *X_p* generating a *n*-torus action on *M*
- $(P, \theta, Y_q) \xrightarrow{\pi} M$ an invariant principal T^n -bundle

T-duality as a Twist

- *X_p* generating a *n*-torus action on *M*
- $(P, \theta, Y_q) \xrightarrow{\pi} M$ an invariant principal T^n -bundle
- $X'_p = \tilde{X}_p + a_{pq}Y_q$ a lift of X_p generating a free torus action, $da_{pq} = -X_p \,\lrcorner\, F^{\theta}_q$

T-duality as a Twist

- *X_p* generating a *n*-torus action on *M*
- $(P, \theta, Y_q) \xrightarrow{\pi} M$ an invariant principal T^n -bundle
- $X'_p = \tilde{X}_p + a_{pq}Y_q$ a lift of X_p generating a free torus action, $da_{pq} = -X_p \,\lrcorner\, F^{\theta}_q$

DEFINITION

A *twist* W of M with respect to X_p is

$$W := P / \langle X'_p \rangle$$

T-duality as a Twist

- *X_p* generating a *n*-torus action on *M*
- $(P, \theta, Y_q) \xrightarrow{\pi} M$ an invariant principal T^n -bundle
- $X'_p = \tilde{X}_p + a_{pq}Y_q$ a lift of X_p generating a free torus action, $da_{pq} = -X_p \,\lrcorner\, F^{\theta}_q$
- Definition

A *twist* W of M with respect to X_p is

$$W \coloneqq P / \langle X'_p \rangle$$

- Transverse locally free lifts always exist for $X_p \,\lrcorner\, F_q^\theta$ exact.
- *W* is at worst an orbifold.

T-duality as a Twist

- *X_p* generating a *n*-torus action on *M*
- (P, θ, Y_q) → M an invariant principal Tⁿ-bundle
- $X'_p = \tilde{X}_p + a_{pq}Y_q$ a lift of X_p generating a free torus action, $da_{pq} = -X_p \,\lrcorner\, F^{\theta}_q$

- Transverse locally free lifts always exist for $X_p \,\lrcorner\, F_q^\theta$ exact.
- *W* is at worst an orbifold.

Definition

A *twist* W of M with respect to X_p is

$$W \coloneqq P / \langle X'_p \rangle$$

DUALLY

M is a twist of *W* with respect to $X_q^W = (\pi_W)_* Y_q$, $\theta_p^W = (a^{-1})^{pq} \theta_q$

DEFINITION

Tensors α on α_W on M and W are \mathcal{H} -related, $\alpha_W \sim_{\mathcal{H}} \alpha$ if their pull-backs agree on $\mathcal{H} = \ker \theta$

Move invariant geometry from M to W by using the corresponding \mathcal{H} -related tensors

$$g_W \sim_{\mathcal{H}} g, \qquad \omega_I^W \sim_{\mathcal{H}} \omega_I, \quad \text{etc.}$$

DEFINITION

Tensors α on α_W on M and W are \mathcal{H} -related, $\alpha_W \sim_{\mathcal{H}} \alpha$ if their pull-backs agree on $\mathcal{H} = \ker \theta$

Move invariant geometry from M to W by using the corresponding \mathcal{H} -related tensors

$$g_W \sim_{\mathcal{H}} g, \qquad \omega_I^W \sim_{\mathcal{H}} \omega_I, \quad \text{etc.}$$

For invariant forms

$$d\alpha_W \sim_{\mathcal{H}} d\alpha - F_q^{\theta} \wedge (a^{-1})^{pq} X_q \,\lrcorner\, \alpha$$

For the KT torsion form $c = -Id\omega_I$:

$$c_W \sim_{\mathcal{H}} c - (a^{-1})^{pq} IF_q^{\theta} \wedge X^p.$$

OUTLINE

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

T-duality as a Twist Construction

3 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure
- HKT Examples

Summary

4 Other Examples via the Twist

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

SUPERCONFORMAL QUANTUM MECHANICS

N particles in 1 dimension

$$H = \frac{1}{2} P_a^* g^{ab} P_b + V(x)$$

Standard quantisation

$$P_a \sim -i rac{\partial}{\partial x^a}, \quad a=1,\ldots,N$$

C D

SUPERCONFORMAL QUANTUM MECHANICS

N particles in 1 dimension Standard quantisation

$$H = \frac{1}{2} P_a^* g^{ab} P_b + V(x) \qquad P_a \sim -i \frac{\partial}{\partial x^a}, \quad a = 1, \dots, N$$

Michelson and Strominger (2000); Papadopoulos (2000)

- operator *D* with $[D,H] = 2iH \iff$ vector field *X* with $L_Xg = 2g \& L_XV = -2V$
- *K* so span{*iH*, *iD*, *iK*} \cong $\mathfrak{sl}(2, \mathbb{R}) \iff X^{\flat} = g(X, \cdot)$ is closed

• then
$$K = \frac{1}{2}g(X, X)$$
.

Choose a superalgebra containing $\mathfrak{sl}(2,\mathbb{R})$ in its even part.

OUTLINE

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

T-duality as a Twist Construction

3 Superconformal Symmetry

Superconformal Quantum Mechanics

• The Superalgebras $D(2, 1; \alpha)$

- Geometric Structure
- HKT Examples

Summary

4 Other Examples via the Twist

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

ANDREW SWANN GEOMETRIC DUALITY

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

ANDREW SWANN GEOMETRIC DUALITY

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

$$\mathfrak{g}_0 = \mathfrak{sl}(2, \mathbb{C}) + \mathfrak{sl}(2, \mathbb{C})_+ + \mathfrak{sl}(2, \mathbb{C})_-$$
$$\mathfrak{g}_1 = \mathbb{C}^2 \otimes \mathbb{C}^2_+ \otimes \mathbb{C}^2_- = \mathbb{C}^4_Q + \mathbb{C}^4_S$$

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2, 1; \alpha)$

 $\blacksquare \ \mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$

$$\mathfrak{g}_{0} = \mathfrak{sl}(2,\mathbb{C}) + \mathfrak{sl}(2,\mathbb{C})_{+} + \mathfrak{sl}(2,\mathbb{C})_{-}$$
$$\mathfrak{g}_{1} = \mathbb{C}^{2} \otimes \mathbb{C}^{2}_{+} \otimes \mathbb{C}^{2}_{-} = \mathbb{C}^{4}_{Q} + \mathbb{C}^{4}_{S}$$
$$[S^{a}, Q^{a}] = D,$$

$$[S^1, Q^2] = -\frac{4\alpha}{1+\alpha}R^3_+ - \frac{4}{1+\alpha}R^3_-$$

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2, 1; \alpha)$

$$\blacksquare \ \mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$$

$$\mathfrak{g}_{0} = \mathfrak{sl}(2, \mathbb{C}) + \mathfrak{sl}(2, \mathbb{C})_{+} + \mathfrak{sl}(2, \mathbb{C})_{-}$$

$$\mathfrak{g}_{1} = \mathbb{C}^{2} \otimes \mathbb{C}^{2}_{+} \otimes \mathbb{C}^{2}_{-} = \mathbb{C}^{4}_{Q} + \mathbb{C}^{4}_{S}$$

$$[S^{a}, Q^{a}] = D,$$

$$[S^{1}, Q^{2}] = -\frac{4\alpha}{1+\alpha}R^{3}_{+} - \frac{4}{1+\alpha}R^{3}_{-}$$

Simple for $\alpha \neq -1, 0, \infty$.

Geometry Twists Superconformal Other

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

$$\mathfrak{g}_{0} = \mathfrak{sl}(2, \mathbb{C}) + \mathfrak{sl}(2, \mathbb{C})_{+} + \mathfrak{sl}(2, \mathbb{C})_{-}$$

$$\mathfrak{g}_{1} = \mathbb{C}^{2} \otimes \mathbb{C}^{2}_{+} \otimes \mathbb{C}^{2}_{-} = \mathbb{C}^{4}_{Q} + \mathbb{C}^{4}_{Q}$$

$$[S^{a}, Q^{a}] = D,$$

$$[S^{1}, Q^{2}] = -\frac{4\alpha}{1+\alpha}R^{3}_{+} - \frac{4}{1+\alpha}R^{3}_{-}$$

Simple for $\alpha \neq -1, 0, \infty$.

 Over C, isomorphisms between the cases α^{±1}, −(1 + α)^{±1}, −(α/(1 + α))^{±1}.

Geometry Twists Superconformal Other

The Superalgebras $D(2, 1; \alpha)$

The classification of simple Lie superalgebras contains *one* continuous family

 $D(2,1;\alpha)$

$$\mathfrak{g}_{0} = \mathfrak{sl}(2,\mathbb{C}) + \mathfrak{sl}(2,\mathbb{C})_{+} + \mathfrak{sl}(2,\mathbb{C})_{-}$$
$$\mathfrak{g}_{1} = \mathbb{C}^{2} \otimes \mathbb{C}^{2}_{+} \otimes \mathbb{C}^{2}_{-} = \mathbb{C}^{4}_{Q} + \mathbb{C}^{4}_{S}$$
$$[S^{a}, Q^{a}] = D,$$
$$\mathfrak{sl}(S^{1}, Q^{2}) = -\frac{4\alpha}{1+\alpha}R^{3}_{+} - \frac{4}{1+\alpha}R^{3}_{-}$$

• Over C, isomorphisms between the cases $\alpha^{\pm 1}, -(1+\alpha)^{\pm 1},$ $-(\alpha/(1+\alpha))^{\pm 1}.$

Real form

$$\mathfrak{g}_0 = \mathfrak{sl}(2,\mathbb{R}) + \mathfrak{su}(2)_+ + \mathfrak{su}(2)_-$$

 Over ℝ, isomorphisms for ^{±1}

Simple for $\alpha \neq -1, 0, \infty$.

OUTLINE

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

T-duality as a Twist Construction

3 SUPERCONFORMAL SYMMETRY

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$

Geometric Structure

HKT Examples

Summary

4 Other Examples via the Twist

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

 \leftrightarrow

$\mathcal{N}=4B$ quantum mechanics

with $D(2,1;\alpha)$ superconformal symmetry

HKT manifold M

with *X* a special homothety of type (a, b)

$$L_X g = ag,$$
$$L_{IX} I = bK,$$

• $L_X I = 0, L_{IX} I = 0, ...$

 \leftrightarrow

$\mathcal{N}=4B$ quantum mechanics

with $D(2, 1; \alpha)$ superconformal symmetry

HKT manifold M

with *X* a *special homothety of type* (a, b)

$$L_X g = ag,$$
$$L_{IX} J = bK,$$

•
$$L_X I = 0, L_{IX} I = 0, ...$$

$$\alpha = \frac{a}{b} - 1$$
Action of
$$\mathbb{R} \times SU(2)$$

rotating I, J, K

$\mathcal{N}=4B$ quantum mechanics

with $D(2, 1; \alpha)$ superconformal symmetry

- $\alpha = \frac{a}{b} 1$ • Action of $\mathbb{R} \times SU(2)$
 - rotating *I*, *J*, *K*

HKT manifold M

with *X* a *special homothety of type* (a, b)

For $a \neq 0$

 \leftrightarrow

- *M* is non-compact
- $\mu = \frac{2}{a(a-b)} ||X||^2$ is an *HKT potential*

$$\omega_I = \frac{1}{2}(dd_I + d_J d_K)\mu = \frac{1}{2}(1 - J)dId\mu.$$

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

 $a = 2, b = -2, \alpha = -2.$

EXAMPLE

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, $\alpha = -2$.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, \alpha = -2.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

E.g. $Q = k \mathbb{CP}(2)$.

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の ○ ○

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, $\alpha = -2$.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

E.g. $Q = k \mathbb{CP}(2)$. For *S* 3-Sasaki, $M = S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha = -2$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, \alpha = -2.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

E.g. $Q = k \mathbb{CP}(2)$. For *S* 3-Sasaki, $M = S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha = -2$ Get to a = 0, special isometry, by potential change

$$g_1 = \frac{1}{\mu}g - \frac{1}{2\mu^2}(d^{\mathbb{H}}\mu)^2$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

ANDREW SWANN GEOMETRIC DUALITY

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, \alpha = -2.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

E.g. $Q = k \mathbb{CP}(2)$. For *S* 3-Sasaki, $M = S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha = -2$ Get to a = 0, special isometry, by potential change

$$g_1 = \frac{1}{\mu}g - \frac{1}{2\mu^2}(d^{\mathbb{H}}\mu)^2$$

Discrete quotient

$$M = (\mu^{-1}(1) \times \mathbb{R}) / \mathbb{Z}(\varphi, 2)$$

with g_1 is HKT with special isometry *X*

Example

$$M = \mathbb{H}^{n+1} \setminus \{0\} \to \mathbb{HP}(n)$$

a = 2, b = -2, \alpha = -2.

Poon and Swann (2003)

 $a \neq 0$ corresponds to $Q = M/(\mathbb{R} \times SU(2)) =$ $\mu^{-1}(1)/SU(2)$ a QKT orbifold (of special type).

E.g. $Q = k \mathbb{CP}(2)$. For *S* 3-Sasaki, $M = S \times \mathbb{R}$ warped product, is hyperKähler with special homothety $\alpha = -2$ Get to a = 0, special isometry, by potential change

$$g_1 = \frac{1}{\mu}g - \frac{1}{2\mu^2}(d^{\mathbb{H}}\mu)^2$$

Discrete quotient

$$M = (\mu^{-1}(1) \times \mathbb{R}) / \mathbb{Z}(\varphi, 2)$$

with g_1 is HKT with special isometry *X*

In this case $dX^{\flat} = 0$ $b_1(M) \ge 1$

OUTLINE

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

T-duality as a Twist Construction

3 SUPERCONFORMAL SYMMETRY

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure
- HKT Examples
- Summary

4 Other Examples via the Twist

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

TWISTING HKT

Twist by

 $g_W \sim_{\mathcal{H}} g$, $\omega_I^W \sim_{\mathcal{H}} \omega_I$, etc.

< ロ > < 団 > < 臣 > < 臣 > 三国 のへの

TWISTING HKT

Twist by

$$g_W \sim_{\mathcal{H}} g$$
, $\omega_I^W \sim_{\mathcal{H}} \omega_I$, etc.

Then

$$Id\omega_I^W \sim_{\mathcal{H}} Id\omega_I + \frac{1}{a}X^{\flat} \wedge I\omega_{\theta}$$

For HKT need

$$c = -Id\omega_I = -Jd\omega_J = -Kd\omega_K$$

TWISTING HKT

Twist by

$$g_W \sim_{\mathcal{H}} g$$
, $\omega_I^W \sim_{\mathcal{H}} \omega_I$, etc.

Then

$$Id\omega_I^W \sim_{\mathcal{H}} Id\omega_I + \frac{1}{a}X^{\flat} \wedge I\omega_{\theta}$$

For HKT need

$$c = -Id\omega_I = -Jd\omega_I = -Kd\omega_K$$

PROPOSITION

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^2 E = \bigcap_I \Lambda_I^{1,1}$, *i.e., an instanton*

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

OM $D(2,1;\alpha)$ Geometry **HKT** Summary

TWISTING HKT

Twist by

$$g_W \sim_{\mathcal{H}} g, \quad \omega_I^W \sim_{\mathcal{H}} \omega_I, \text{ etc.}$$

Then

$$Id\omega_I^W \sim_{\mathcal{H}} Id\omega_I + \frac{1}{a} X^{\flat} \wedge I\omega_{\theta}$$

For HKT need

$$c = -Id\omega_I = -Jd\omega_I = -Kd\omega_K$$

PROPOSITION

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^2 E = \bigcap_I \Lambda_I^{1,1}$, i.e., an instanton

X a special isometry, $X \,\lrcorner\, F_{\theta} = 0$ twists to X_W a special isometry

Twisting HKT

Twist by

$$g_W \sim_{\mathcal{H}} g$$
, $\omega_I^W \sim_{\mathcal{H}} \omega_I$, etc.

Then

$$Id\omega_I^W \sim_{\mathcal{H}} Id\omega_I + \frac{1}{a} X^{\flat} \wedge I\omega_{\theta}$$

For HKT need

$$c = -Id\omega_I = -Jd\omega_I = -Kd\omega_K$$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^2 E = \bigcap_I \Lambda_I^{1,1}$, *i.e., an instanton* *X* a special isometry, $X \,\lrcorner\, F_{\theta} = 0$ twists to X_W a special isometry

Theorem

 $\begin{array}{l} M \ HKT \ with \ special \ isometry \\ (\alpha = -1). \ Can \\ \bullet \ untwist \ locally \ to \ dX^{\flat} = 0 \\ on \ S \times S^1 \end{array}$

• *change potential on* $S \times \mathbb{R}$ *to* $a \neq 0$, $(\alpha = -2)$

Twisting HKT

Twist by

$$g_W \sim_{\mathcal{H}} g$$
, $\omega_I^W \sim_{\mathcal{H}} \omega_I$, etc.

Then

$$Id\omega_I^W \sim_{\mathcal{H}} Id\omega_I + \frac{1}{a}X^{\flat} \wedge I\omega_{\theta}$$

For HKT need

$$c = -Id\omega_I = -Jd\omega_I = -Kd\omega_K$$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^2 E = \bigcap_I \Lambda_I^{1,1}$, *i.e., an instanton* *X* a special isometry, $X \,\lrcorner\, F_{\theta} = 0$ twists to X_W a special isometry

Theorem

 $\begin{array}{l} M \ HKT \ with \ special \ isometry \\ (\alpha = -1). \ Can \\ \bullet \ untwist \ locally \ to \ dX^{\flat} = 0 \\ on \ S \times S^1 \end{array}$

• *change potential on* $S \times \mathbb{R}$ *to* $a \neq 0$, $(\alpha = -2)$

$$F_{\theta} = dX^{\flat}$$
 is an instanton

Twisting HKT

Twist by

$$g_W \sim_{\mathcal{H}} g$$
, $\omega_I^W \sim_{\mathcal{H}} \omega_I$, etc.

Then

$$Id\omega_I^W \sim_{\mathcal{H}} Id\omega_I + \frac{1}{a}X^{\flat} \wedge I\omega_{\theta}$$

For HKT need

$$c = -Id\omega_I = -Jd\omega_J = -Kd\omega_K$$

Proposition

HKT twists to HKT via a circle if and only if $F_{\theta} \in S^2 E = \bigcap_I \Lambda_I^{1,1}$, *i.e., an instanton* *X* a special isometry, $X \,\lrcorner\, F_{\theta} = 0$ twists to X_W a special isometry

Theorem

 $\begin{array}{l} M \ HKT \ with \ special \ isometry \\ (\alpha = -1). \ Can \\ \bullet \ untwist \ locally \ to \ dX^{\flat} = 0 \\ on \ S \times S^1 \end{array}$

• *change potential on* $S \times \mathbb{R}$ *to* $a \neq 0$, $(\alpha = -2)$

 $F_{\theta} = dX^{\flat}$ is an instanton

Many simply-connected examples when $b_2(S) \ge 1$ E.g., $Q = k \mathbb{CP}(2)$

OUTLINE

1 Geometry

- Metric geometry with torsion
- KT Geometry
- HKT Geometry

2 Twists

T-duality as a Twist Construction

3 Superconformal Symmetry

- Superconformal Quantum Mechanics
- The Superalgebras $D(2, 1; \alpha)$
- Geometric Structure
- HKT Examples

Summary

4 Other Examples via the Twist

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

SUMMARY

D(2, 1; *α*) superconformal symmetry realised by HKT with *R* × *SU*(2) action

- *D*(2, 1; *α*) superconformal symmetry realised by HKT with *R* × *SU*(2) action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

- $D(2, 1; \alpha)$ superconformal symmetry realised by HKT with $\mathbb{R} \times SU(2)$ action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
- *α* = -1 comes from previous examples via change of potential and twist

- *D*(2, 1; *α*) superconformal symmetry realised by HKT with *R* × *SU*(2) action
- $\alpha \neq -1$ comes from $\mathbb{R} \times SO(3)$ bundles over certain QKT orbifolds
- *α* = -1 comes from previous examples via change of potential and twist
- construct non-homogeneous compact simply-connected examples with *α* = −1

GENERAL HKT WITH TORUS SYMMETRY

 $\blacksquare M = N_1 \times N_2$

• N_2 with an HKT torus symmetry X_p

•
$$[F_q^{\theta}] \in H^2(N_1, \mathbb{Z}), F_q^{\theta} \in S^2E$$
 instanton

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

GENERAL HKT WITH TORUS SYMMETRY

- $\blacksquare M = N_1 \times N_2$
- N_2 with an HKT torus symmetry X_p

•
$$[F_q^{\theta}] \in H^2(N_1, \mathbb{Z}), F_q^{\theta} \in S^2E$$
 instanton

Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with torus symmetry

GENERAL HKT WITH TORUS SYMMETRY

- $\blacksquare M = N_1 \times N_2$
- N_2 with an HKT torus symmetry X_p

•
$$[F_q^{\theta}] \in H^2(N_1, \mathbb{Z}), F_q^{\theta} \in S^2E$$
 instanton

Twists to $N_2 \rightarrow W \rightarrow N_1$ HKT with torus symmetry

EXAMPLE

 N_1 a K3 surface $N_2 = G$ compact Lie dim = 4k or $N_2 = S \times S^1$, S 3-Sasaki F_{θ} self-dual, primitive

Generate:

- large number of simply-connected examples, including new examples with reduced holonomy;
- all examples on compact nilmanifolds, *N*^{*i*} tori.

HYPERCOMPLEX VS. HKT

Theorem (Swann (2008))

There is a simply-connected T^4 -bundle M over a K3 surface N that admits integrable I, J and K, but no compatible HKT metric.

This is constructed as a twist of $T^4 \times N$ using F_q^{θ} not of instanton type, but chosen so that integrability of the complex structures is preserved.

References I

- M. L. Barberis and A. Fino. New strong HKT manifolds arising from quaternionic representations, May 2008. eprint arXiv:0805.2335[math.DG].
- E. Bergshoeff, C. Hull, and T. Ortín. Duality in the type-II superstring effective action. *Nuclear Phys. B*, 451(3):547–575, 1995. ISSN 0550-3213.
- C. P. Boyer. A note on hyperHermitian four-manifolds. *Proc. Amer. Math. Soc.*, 102:157–164, 1988.
- C. G. Callan, Jr., J. A. Harvey, and A. Strominger. Worldsheet approach to heterotic instantons and solitons. *Nuclear Phys. B*, 359(2-3):611–634, 1991. ISSN 0550-3213.

References

References II

- R. A. Coles and G. Papadopoulos. The geometry of the one-dimensional supersymmetric nonlinear sigma models. *Classical Quantum Gravity*, 7(3):427–438, 1990. ISSN 0264-9381.
- P. Gauduchon. Structures de Weyl et théorèmes d'annulation sur une varété conforme autoduale. *Ann. Sc. Norm. Sup. Pisa*, 18:563–629, 1991.
- G. W. Gibbons, G. Papadopoulos, and K. S. Stelle. HKT and OKT geometries on soliton black hole moduli spaces. *Nuclear Phys. B*, 508(3):623–658, 1997. ISSN 0550-3213.
- Jai Grover, Jan B. Gutowski, Carlos A. R. Herdeiro, and Wafic Sabra. HKT geometry and de Sitter supergravity. *Nuclear Phys. B*, 809(3):406–425, 2009. ISSN 0550-3213. doi: 10.1016/j.nuclphysb.2008.08.024. URL http://dx.doi.org/10.1016/j.nuclphysb.2008.08.024.

References

References III

- C. M. Hull. The geometry of supersymmetric quantum mechanics, October 1999. eprint arXiv:hep-th/9910028.
- F. Martín Cabrera and A. F. Swann. The intrinsic torsion of almost quaternion-hermitian manifolds. *Ann. Inst. Fourier*, 58(5):1455–1497, 2008. ISSN 0373-0956.
- J. Michelson and A. Strominger. The geometry of (super) conformal quantum mechanics. *Comm. Math. Phys.*, 213(1): 1–17, 2000. ISSN 0010-3616.
- G. Papadopoulos. Conformal and superconformal mechanics. *Classical Quantum Gravity*, 17(18):3715–3741, 2000. ISSN 0264-9381.
- Y. S. Poon and A. F. Swann. Superconformal symmetry and hyperKähler manifolds with torsion. *Commun. Math. Phys.*, 241(1):177–189, 2003.

References

References IV

- A. Strominger. Superstrings with torsion. *Nuclear Phys. B*, 274 (2):253–284, 1986. ISSN 0550-3213.
- A. F. Swann. Twisting Hermitian and hypercomplex geometries. in preparation, 2008.
- M. Verbitsky. Hyperkähler manifolds with torsion obtained from hyperholomorphic bundles, March 2003. eprint arXiv:math.DG/0303129.