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(M, w) is symplectic if w € QO?(M) is closed (dw = 0) and
non-degenerate.

BASIC CALCULATION

If X preserves w, then
0=Lxw=Xsdw+dX.w) =d(X 1w).

So the one-form X Jw is dpx, for some local function px.

DEFINITION

A moment map for an action of G on M that preserves w is an
equivariant map
u:M—g*

such that d(p, X) = X Jw, for each X € g.
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SYMPLECTIC EXAMPLES

FLAT sPACE COTANGENT BUNDLE

M = R*" = C" with M = T*N is symplectic with
idx]/\dy] w =dq' Ndpi + - +dg" Ndpy
j=1 =do, O(W)y = (T, W).

Circle action z — ez hzas Any G C Diff(N) admits a

u(xy) = (IIx[I" + [yl moment map, pix = 6(X).

COAD]OINT ORBITS

O = G- 0y C g* has Kirillov-Kostant-Souriau form
w(X,Y)e=0(XY]), 6€0,XYeg.

The moment map u: O — g* is just inclusion.
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USES OF SYMPLECTIC MOMENT MAPS

® Reduction: N = u~1(0)/G is symplectic,
dim N = dimM — 2dim G if G acts freely.
e CP(n) = R>"*2 j sl
e T"N /G =T*(N/G).
¢ extensions to Kéhler, hyperKéahler, etc.
e gauge theory moduli spaces.

® Classification Theorems:

e homogeneous symplectic manifolds, homogeneous Kihler;

e cohomogeneity one hyperKéahler, quaternionic Kahler;

e contact manifolds, twistor spaces, 3-Sasaki manifolds with
large symmetry.

® Constructions:
e toric varieties: G = T", dimM =2n, y: M -+ A CR" a
convex polytope;
e cuts, implosions.
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KEY PROPERTIES OF SYMPLECTIC MOMENT MAPS

u:M— g*
e Target space is a vector space independent of M.
e 1 exists if either
@ G is compact and b;(M) =0,
® M is compact, with b; (M) =0,
® w = d6 with 0 invariant under G, or
O G is semi-simple.
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DEFINITION

(M, c) forms a strong geometry if c € Q3(M) is closed, dc = 0.

The geometry is 2-plectic (Baez, Hoffnung, and Rogers, 2010) if
c is non-degenerate, in the sense that X ¢ = 0 only for X = 0.

EXTENDED PHASE SPACE

M = A’T*N,

c= qui Adg A dpij
i<j

=dp, B (U, V) = a(m U, V)

is 2-plectic.
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EXAMPLES OF STRONG GEOMETRIES

STRONG GEOMETRIES WITH TORSION

(M, g,c), g Riemannian defines

V=V*+1,
a metric connection Vg = 0 with the same geodesics as V*¢.

e M = G/K isotropy irreducible, ¢(X,Y,Z) = (X, [Y, Z]).

e Strong KT geometry: (M, g, 1, F;) Hermitian, c = —IdF;.
Gauduchon (1984) every compact Hermitian M* is
conformally SKT.

Other examples of strong geometries include:
¢ Holonomy G; manifolds.
e Hermitian manifolds, ¢ = dFj.
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If X preserves c, then

0=Lxc=Xadc+d(Xic)=d(Xic).
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COVARIANT MOMENT MAPS

(M, c) strong (dc = 0).

BASIC CALCULATION

If X preserves c, then

0=Lxc=Xadc+d(Xic)=d(Xic).
So the two-form X _c is dax for some local one-form ax.

DEFINITION

A covariant moment map for an action of G on M that preserves
cis
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COVARIANT MOMENT MAPS

(M, c) strong (dc = 0).

BASIC CALCULATION

If X preserves c, then

0=Lxc=Xadc+d(Xic)=d(Xic).
So the two-form X _c is dax for some local one-form ax.

DEFINITION

A covariant moment map for an action of G on M that preserves
¢ is an equivariant map

w: M — OYM,g)
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COVARIANT MOMENT MAPS

(M, c) strong (dc = 0).

BASIC CALCULATION

If X preserves c, then

0=Lxc=Xadc+d(Xic)=d(Xic).

So the two-form X _c is dax for some local one-form ax.

DEFINITION

A covariant moment map for an action of G on M that preserves
¢ is an equivariant map

w: M — OYM,g)

such that d(«x, X) = X J¢, for each X € g.
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COVARIANT MOMENT MAPS: DISCUSSION

a: M — QY(M, g) with d{(a, X) = X Jc.

e Definition introduced and studied by Carifiena, Crampin,
and Ibort (1991) and by Gotay, Isenberg, Marsden, and
Montgomery (1998).
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e Definition introduced and studied by Carifiena, Crampin,
and Ibort (1991) and by Gotay, Isenberg, Marsden, and
Montgomery (1998).

e Problems include:

@ Target space Q! (M, g) depends both on M and g.
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COVARIANT MOMENT MAPS: DISCUSSION

a: M — QY (M, g) with d{a, X) = X Jc.

e Definition introduced and studied by Carifiena, Crampin,
and Ibort (1991) and by Gotay, Isenberg, Marsden, and
Montgomery (1998).

e Problems include:

@ Target space Q! (M, g) depends both on M and g.
@ Existence often requires some restrictive assumption such
as by(M) = 0.
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COMMUTING VECTOR FIELDS

(M, c) strong (dc = 0).

BASIC CALCULATION

Suppose X preserves c, then

0=Lxc=X_adc+d(Xic)=d(X ac).

Now suppose Y preserves both X and c:
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COMMUTING VECTOR FIELDS

(M, c) strong (dc = 0).

BASIC CALCULATION

Suppose X preserves c, then

0=Lxc=X_adc+d(Xic)=d(X ac).
Now suppose Y preserves both X and c:

[X,Y]=0 and Lyc=0.
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COMMUTING VECTOR FIELDS

(M, c) strong (dc = 0).

BASIC CALCULATION

Suppose X preserves c, then

0=Lxc=X_dc+d(Xsc)=d(Xc).
Now suppose Y preserves both X and c:
[X,Y]=0 and Lyc=0.
Then

0=Ly(Xic)=Yud(Xsc)+d(YiXuc)=de(X,Y,").
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COMMUTING VECTOR FIELDS

(M, c) strong (dc = 0).

BASIC CALCULATION

Suppose X preserves c, then

0=Lxc=X_adc+d(Xic)=d(X ac).
Now suppose Y preserves both X and c:
[X,Y]=0 and Lyc=0.
Then
0=Ly(Xuc)=Yd(Xuc)+d(YoX1c) =de(X,Y,-).

So the one-form ¢(X, Y, ) is dvy y
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COMMUTING VECTOR FIELDS

(M, c) strong (dc = 0).

BASIC CALCULATION

Suppose X preserves c, then

0=Lxc=X_adc+d(Xic)=d(X ac).
Now suppose Y preserves both X and c:
[X,Y]=0 and Lyc=0.
Then
0=Ly(Xuc)=Yd(Xuc)+d(YoX1c) =de(X,Y,-).

So the one-form ¢(X, Y, -) is dvy y for some local function vy .
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LIE KERNELS

DEFINITION

The Lie kernel Py of Lie algebra g is
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Py = ker([-,]: A%*g —g).
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DEFINITION

The Lie kernel Py of Lie algebra g is

Py = ker([-,]: A%*g —g).

A typical element of p € P, has the form
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LIE KERNELS

DEFINITION

The Lie kernel Py of Lie algebra g is

Py = ker([-,]: A%*g —g).

A typical element of p € P, has the form
p=XiAY1+--+XAY,
with

Zr;[xi, Y] =0.

i=1
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LIE KERNELS

DEFINITION

The Lie kernel Py of Lie algebra g is

Py = ker([-,]: A%*g —g).

A typical element of p € P, has the form
p=XiAY1+--+XAY,
with

7

Y [X;,Yi] = 0.

i=1
Linearity in the basic calculation shows that

r

dpoc) =d() c(X, Yi,-)) = —(i[xi, Y)]) sc=o0.

i=1 i=1
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DEFINITION

A multi-moment map for G acting on M preserving c is
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DEFINITION

A multi-moment map for G acting on M preserving c is an
equivariant map

viM— Py
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MULTI-MOMENT MAPS

DEFINITION

A multi-moment map for G acting on M preserving c is an
equivariant map
viM— Py

such that d(v,p) =p ac
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DEFINITION

A multi-moment map for G acting on M preserving c is an
equivariant map
viM— Py

such that d(v,p) = pcforall p € P,.

Note that:
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MULTI-MOMENT MAPS

DEFINITION

A multi-moment map for G acting on M preserving c is an
equivariant map
viM— Py

such that d(v,p) = pcforall p € P,.

Note that:

e P; C A*g* is a linear subspace depending on g, not on M.
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MULTI-MOMENT MAPS

DEFINITION

A multi-moment map for G acting on M preserving c is an
equivariant map
viM— Py

such that d(v,p) = pcforall p € P,.

Note that:
e P; C A*g* is a linear subspace depending on g, not on M.
e For G Abelian, Py = A?g.
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MULTI-MOMENT MAPS

DEFINITION

A multi-moment map for G acting on M preserving c is an
equivariant map
viM— Py

such that d(v,p) = pcforall p € P,.

Note that:
e P; C A*g* is a linear subspace depending on g, not on M.
e For G Abelian, Py = A%g

e For G semi-simple, A2 g = g ®Py. In particular, for G
compact and simple, P, is the isotropy representation of
the isotropy irreducible space SO(dimg)/G.
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EXISTENCE OF MULTI-MOMENT MAPS

Suppose G acts on M preserving the closed three-form c.
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Suppose G acts on M preserving the closed three-form c. Then a
multi-moment map v: M — Py exists if either

© G is compact and by (M) = 0,
® M is compact with a G-invariant volume form and by (M) = 0,

® c = dp with B invariant under G, or
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EXISTENCE OF MULTI-MOMENT MAPS

Suppose G acts on M preserving the closed three-form c. Then a
multi-moment map v: M — Py exists if either

© G is compact and by (M) = 0,

® M is compact with a G-invariant volume form and by (M) = 0,
® c = dp with B invariant under G, or

® D2(g) = 0= bs(g).
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THEOREM

Suppose G acts on M preserving the closed three-form c. Then a
multi-moment map v: M — Py exists if either

© G is compact and by (M) = 0,

® M is compact with a G-invariant volume form and by (M) = 0,
® c = dp with B invariant under G, or

® D2(g) = 0= bs(g).

Cf. the results for symplectic moment maps, noting
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© G is compact and by (M) = 0,

® M is compact with a G-invariant volume form and by (M) = 0,
® c = dp with B invariant under G, or

® D2(g) = 0= bs(g).

Cf. the results for symplectic moment maps, noting
¢ a symplectic manifold has a canonical volume form w”,
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EXISTENCE OF MULTI-MOMENT MAPS

THEOREM

Suppose G acts on M preserving the closed three-form c. Then a
multi-moment map v: M — Py exists if either

© G is compact and by (M) = 0,
® M is compact with a G-invariant volume form and by (M) = 0,
® c = dp with B invariant under G, or
@ by(g) =0 = bs(g).
Cf. the results for symplectic moment maps, noting

¢ a symplectic manifold has a canonical volume form w”,
e G is semi-simple if and only if b1 (g) = 0 = ba(g).
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EXISTENCE OF MULTI-MOMENT MAPS

THEOREM

Suppose G acts on M preserving the closed three-form c. Then a
multi-moment map v: M — Py exists if either

© G is compact and by (M) = 0,
® M is compact with a G-invariant volume form and by (M) = 0,
® c = dp with B invariant under G, or
® by(g) = 0=bs(g).
Cf. the results for symplectic moment maps, noting
¢ a symplectic manifold has a canonical volume form w”,

e G is semi-simple if and only if b1 (g) = 0 = ba(g).
For item 4,
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EXISTENCE OF MULTI-MOMENT MAPS

THEOREM

Suppose G acts on M preserving the closed three-form c. Then a
multi-moment map v: M — Py exists if either

© G is compact and by (M) = 0,
® M is compact with a G-invariant volume form and by (M) = 0,
® c = dp with B invariant under G, or
® by(g) = 0=bs(g).
Cf. the results for symplectic moment maps, noting
¢ a symplectic manifold has a canonical volume form w”,

e G is semi-simple if and only if b1 (g) = 0 = ba(g).
For item 4, d: A® g* — A% g* induces a map dp: Py — Z3(g);
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EXISTENCE OF MULTI-MOMENT MAPS

THEOREM

Suppose G acts on M preserving the closed three-form c. Then a
multi-moment map v: M — Py exists if either

© G is compact and by (M) = 0,

® M is compact with a G-invariant volume form and by (M) = 0,
® c = dp with B invariant under G, or

® D2(g) = 0= bs(g).

Cf. the results for symplectic moment maps, noting
¢ a symplectic manifold has a canonical volume form w”,
e G is semi-simple if and only if b1 (g) = 0 = ba(g).
For item 4, d: A% g* — A3 g* induces a map dp: Py — Z3(g);
injective only if by(g) =0
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EXISTENCE OF MULTI-MOMENT MAPS

THEOREM

Suppose G acts on M preserving the closed three-form c. Then a
multi-moment map v: M — Py exists if either

© G is compact and by (M) = 0,

® M is compact with a G-invariant volume form and by (M) = 0,
® c = dp with B invariant under G, or

® D2(g) = 0= bs(g).

Cf. the results for symplectic moment maps, noting
¢ a symplectic manifold has a canonical volume form w”,
e G is semi-simple if and only if b1 (g) = 0 = ba(g).
For item 4, d: A% g* — A3 g* induces a map dp: Py — Z3(g);
injective only if b,(g) = 0 and surjective only if b3(g) = 0.
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ExaMPLES |

EXTENDED PHASE SPACE

M = A2T*N, G C Diff(N).
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ExaMPLES |

EXTENDED PHASE SPACE

M = A?T*N, G C Diff(N). Here ¢ = dpB, so we are case 3
above.
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ExaMPLES |

EXTENDED PHASE SPACE

M = A?T*N, G C Diff(N). Here ¢ = dpB, so we are case 3
above. This has a multi-moment map with v(p) = B(p).

M8 = SU(3)
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ExaMPLES |

EXTENDED PHASE SPACE

M = A?T*N, G C Diff(N). Here ¢ = dpB, so we are case 3
above. This has a multi-moment map with v(p) = B(p).

M8 = SU(3)

This carries a hypercomplex structure I, ], K found by Joyce
(1992)
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ExaMPLES |

EXTENDED PHASE SPACE

M = A?T*N, G C Diff(N). Here ¢ = dpB, so we are case 3
above. This has a multi-moment map with v(p) = B(p).

M8 = SU(3)

This carries a hypercomplex structure I, ], K found by Joyce
(1992) compatible with the bi-invariant metric.
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ExaMPLES |

EXTENDED PHASE SPACE

M = A?T*N, G C Diff(N). Here ¢ = dpB, so we are case 3
above. This has a multi-moment map with v(p) = B(p).

M8 = SU(3)

This carries a hypercomplex structure I, ], K found by Joyce
(1992) compatible with the bi-invariant metric. Taking ¢; = dFj,
etc.,
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ExaMPLES |

EXTENDED PHASE SPACE

M = A?T*N, G C Diff(N). Here ¢ = dpB, so we are case 3
above. This has a multi-moment map with v(p) = B(p).

M8 = SU(3)

This carries a hypercomplex structure I, ], K found by Joyce
(1992) compatible with the bi-invariant metric. Taking ¢; = dFj,
etc., case 3 above gives three multi-moment maps

VL, Vj, VK : M = SU(?)) — P:u(3)

for the left action of SU(3).
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ExaMPLES |

EXTENDED PHASE SPACE

M = A?T*N, G C Diff(N). Here ¢ = dpB, so we are case 3
above. This has a multi-moment map with v(p) = B(p).

M8 = SU(3)

This carries a hypercomplex structure I, ], K found by Joyce
(1992) compatible with the bi-invariant metric. Taking ¢; = dFj,
etc., case 3 above gives three multi-moment maps

VL, Vj, VK : M = SU(?)) — P:u(3)

for the left action of SU(3). Each image is the homogeneous
space F1,(C?) = SU(3)/T>.
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ExaMPLES |

EXTENDED PHASE SPACE

M = A?T*N, G C Diff(N). Here ¢ = dpB, so we are case 3
above. This has a multi-moment map with v(p) = B(p).

M8 = SU(3)

This carries a hypercomplex structure I, ], K found by Joyce
(1992) compatible with the bi-invariant metric. Taking ¢; = dFj,
etc., case 3 above gives three multi-moment maps

VL, Vj, VK : M = SU(?)) — P:u(3)

for the left action of SU(3). Each image is the homogeneous
space F1,(C3?) = SU(3)/T?. We get an injection

(1/[,1/],1/1()2 SU(3) — (F1,2<C3))3-
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= SU(3) AGAIN
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M8 = SU(3) acaIN

carries a bi-invariant closed 3-form ¢(X, Y, Z) = (X, [Y, Z]),
X,Y,Z € su(3).
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ExamprLEs 11

M8 = SU(3) acaIN

carries a bi-invariant closed 3-form ¢(X, Y, Z) = (X, [Y, Z]),
X,Y,Z € su(3). M8 is simply-connected, so b; (M) = 0.
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(2,3)-TRIVIAL

M8 = SU(3) acaIN

carries a bi-invariant closed 3-form ¢(X, Y, Z) = (X, [Y, Z]),
X,Y,Z € su(3). M8 is simply-connected, so b; (M) = 0.
SU(3) acts on the left,
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ExamprLEs 11

M8 = SU(3) acaIN

carries a bi-invariant closed 3-form ¢(X, Y, Z) = (X, [Y, Z]),
X,Y,Z € su(3). M8 is simply-connected, so b; (M) = 0.
SU(3) acts on the left, but c is 0 on Py, 3). So although vy,
exists, it is trivial.
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ExamprLEs 11

M8 = SU(3) acaIN

carries a bi-invariant closed 3-form ¢(X, Y, Z) = (X, [Y, Z]),
X,Y,Z € su(3). M8 is simply-connected, so b; (M) = 0.
SU(3) acts on the left, but c is 0 on Py, 3). So although vy,
exists, it is trivial.

Instead, take G = SU(3) x U(1) acting as (g,z) - A = gAz™ L.
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ExamprLEs 11

M8 = SU(3) acaIN

carries a bi-invariant closed 3-form ¢(X, Y, Z) = (X, [Y, Z]),
X,Y,Z € su(3). M8 is simply-connected, so b; (M) = 0.
SU(3) acts on the left, but c is 0 on Py, 3). So although vy,
exists, it is trivial.

Instead, take G = SU(3) x U(1) acting as (g,z) - A = gAz™ L.
Now

kerv, = [su(3),u(1)]* = u(2)
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ExamprLEs 11

M8 = SU(3) acaIN

carries a bi-invariant closed 3-form ¢(X, Y, Z) = (X, [Y, Z]),
X,Y,Z € su(3). M8 is simply-connected, so b; (M) = 0.
SU(3) acts on the left, but c is 0 on Py, 3). So although vy,
exists, it is trivial.

Instead, take G = SU(3) x U(1) acting as (g,z) - A = gAz™ L.
Now

kerv, = [su(3),u(1)]* = u(2)

and

v: SU(3) — CP(2) C su(3) C su(3) + Psu(3) = Pau(3)+u(1)
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ExamprLEs 11

M8 = SU(3) acaIN

carries a bi-invariant closed 3-form ¢(X, Y, Z) = (X, [Y, Z]),
X,Y,Z € su(3). M8 is simply-connected, so b; (M) = 0.
SU(3) acts on the left, but c is 0 on Py, 3). So although vy,
exists, it is trivial.

Instead, take G = SU(3) x U(1) acting as (g,z) - A = gAz™ L.
Now

kerv, = [su(3),u(1)]* = u(2)
and
v: SU(3) — CP(2) C su(3) C su(3) + Psu(3) = Pau(3)+u(1)

is the description of SU(3) as a hypercomplex (HKT) Swann
bundle over the quaternionic Kéhler CP(2).
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HOMOGENEOUS SPACES AND ORBITS

ANDREW SWANN MOMENT MAP GEOMETRY FOR THREE-FORMS



BACKGROUND MULTI-MOMENT Gy HOLONOMY SUMMARY COMMUTING LIE KERNELS EXISTENCE (2,3)-TRIVIAL

ExamprLEs 111
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Homogeneous strong manifolds (G/H,c)
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HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g)
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ExamprLEs 111

HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) viacy(X,Y,Z) = ¥Y(X,Y, 2).
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HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
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ExamprLEs 111

HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ ={X e€g: X ¥y =0}.
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ExamprLEs 111

HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ ={X e€g: X ¥y =0}.

If bz(g) =0
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ExamprLEs 111

HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ ={X e€g: X ¥y =0}.

If by(g) = 0 then dp: Py — Z3(g) is injective.
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HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ ={X e€g: X ¥y =0}.

If by(g) = 0 then dp: Py — Z3(g) is injective. For ¥ = dpp,
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ExamprLEs 111

HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ = {X €g: X ¥y =0}.
If by(g) = 0 then dp: P; — Z3(g) is injective. For ¥ = dpp, the
orbits Op = G- B — Py and G - Y are identified
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HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ ={X e€g: X ¥y =0}.

If by(g) = 0 then dp: P; — Z3(g) is injective. For ¥ = dpp, the
orbits Op = G- B — Py and G - Y are identified and the
inclusion Og
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ExamprLEs 111

HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ ={X e€g: X ¥y =0}.

If by(g) = 0 then dp: P; — Z3(g) is injective. For ¥ = dpp, the
orbits Op = G- B — Py and G - Y are identified and the
inclusion Op induces the multi-moment map for the strong
geometry on G/H.
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ExamprLEs 111

HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ ={X e€g: X ¥y =0}.

If by(g) = 0 then dp: P; — Z3(g) is injective. For ¥ = dpp, the
orbits Op = G- B — Py and G - Y are identified and the
inclusion Op induces the multi-moment map for the strong
geometry on G/H.

THEOREM

If ba(g) = 0, each Op C Py arises as the image of a multi-moment
map for a strong geometry.

ANDREW SWANN MOMENT MAP GEOMETRY FOR THREE-FORMS



BACKGROUND MULTI-MOMENT Gp HOLONOMY SUMMARY COMMUTING LIE KERNELS EXISTENCE (2,3)-TRIVIAL

ExamprLEs 111

HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ ={X e€g: X ¥y =0}.

If by(g) = 0 then dp: P; — Z3(g) is injective. For ¥ = dpp, the
orbits Op = G- B — Py and G - Y are identified and the
inclusion Op induces the multi-moment map for the strong
geometry on G/H.

THEOREM

If ba(g) = 0, each Op C Py arises as the image of a multi-moment
map for a strong geometry. That geometry may be realised on Op if
and only if
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ExamprLEs 111

HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ ={X e€g: X ¥y =0}.

If by(g) = 0 then dp: P; — Z3(g) is injective. For ¥ = dpp, the
orbits Op = G- B — Py and G - Y are identified and the
inclusion Op induces the multi-moment map for the strong
geometry on G/H.

THEOREM

If ba(g) = 0, each Op C Py arises as the image of a multi-moment
map for a strong geometry. That geometry may be realised on Op if
and only if Lie stabg B = kerdpp.
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ExamprLEs 111

HOMOGENEOUS SPACES AND ORBITS

Homogeneous strong manifolds (G/H, c¢) fibre over orbits
G-Yin Z3(g) via c.y(X,Y,Z) = ¥(X, Y, Z). Holds for any ¥
and all H C G closed withh Cker¥ ={X e€g: X ¥y =0}.

If by(g) = 0 then dp: P; — Z3(g) is injective. For ¥ = dpp, the
orbits Op = G- B — Py and G - Y are identified and the
inclusion Op induces the multi-moment map for the strong
geometry on G/H.

THEOREM

If ba(g) = 0, each Op C Py arises as the image of a multi-moment
map for a strong geometry. That geometry may be realised on Op if
and only if Lie stabg B = kerdpp. In this case Op is 2-plectic.
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(2,3)-TRIVIAL LIE ALGEBRAS |

DEFINITION

A Lie algebra g is (cohomologically) (2,3)-trivial if

ba(g) = 0 = bs(g).
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(2,3)-TRIVIAL LIE ALGEBRAS |

DEFINITION

A Lie algebra g is (cohomologically) (2,3)-trivial if

ba(g) = 0 = bs(g).

Let g be a (2,3)-trivial Lie algebra. Then g is solvable
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(2,3)-TRIVIAL LIE ALGEBRAS |

DEFINITION

A Lie algebra g is (cohomologically) (2,3)-trivial if
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THEOREM

Let g be a (2,3)-trivial Lie algebra. Then g is solvable but not
nilpotent
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DEFINITION

A Lie algebra g is (cohomologically) (2,3)-trivial if

THEOREM
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Let g be a (2,3)-trivial Lie algebra. Then g is solvable but not
nilpotent and is not a product of smaller dimensional algebras.
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DEFINITION

A Lie algebra g is (cohomologically) (2,3)-trivial if

THEOREM

S
N
—~
i=
—
I
(e}
I
fny
(¢S]
—~
©
~—

Let g be a (2,3)-trivial Lie algebra. Then g is solvable but not
nilpotent and is not a product of smaller dimensional algebras.
Writing ¢ = ¢’ for the derived algebra,
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A Lie algebra g is (cohomologically) (2,3)-trivial if
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Let g be a (2,3)-trivial Lie algebra. Then g is solvable but not
nilpotent and is not a product of smaller dimensional algebras.
Writing ¢ = ¢’ for the derived algebra, € is nilpotent
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DEFINITION

A Lie algebra g is (cohomologically) (2,3)-trivial if

THEOREM
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Let g be a (2,3)-trivial Lie algebra. Then g is solvable but not
nilpotent and is not a product of smaller dimensional algebras.
Writing ¢ = ¢’ for the derived algebra, € is nilpotent and g / ¢ is
one-dimensional.
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DEFINITION

A Lie algebra g is (cohomologically) (2,3)-trivial if

THEOREM

S
N
—~
i=
—
I
(e}
I
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(¢S]
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©
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Let g be a (2,3)-trivial Lie algebra. Then g is solvable but not
nilpotent and is not a product of smaller dimensional algebras.
Writing ¢ = ¢’ for the derived algebra, € is nilpotent and g / ¢ is
one-dimensional.

A one-dimensional solvable extension g = RX + € of a nilpotent
algebra ¢ is (2, 3)-trivial
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DEFINITION

A Lie algebra g is (cohomologically) (2,3)-trivial if

THEOREM

S
N
—~
i=
—
I
(e}
I
fny
(¢S]
—~
©
~—

Let g be a (2,3)-trivial Lie algebra. Then g is solvable but not
nilpotent and is not a product of smaller dimensional algebras.
Writing ¢ = ¢’ for the derived algebra, € is nilpotent and g / ¢ is
one-dimensional.

A one-dimensional solvable extension g = RX + € of a nilpotent
algebra € is (2,3)-trivial if and only if the fixed-point spaces H'(£)*
are trivial for i = 1,2 and 3.
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o Using the theorem it easy to classify the (2, 3)-trivial
algebras in small dimensions. Up to dimension 3 we have
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(2,3)-TRIVIAL LIE ALGEBRAS II

o Using the theorem it easy to classify the (2, 3)-trivial
algebras in small dimensions. Up to dimension 3 we have
. (0,21),
e (0,21 +31,31),
e (0,21,A31), |A| €(0,1),
e (0,A21+31,—21+A31), A>0.
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o Using the theorem it easy to classify the (2, 3)-trivial
algebras in small dimensions. Up to dimension 3 we have
. (0,21),
e (0,21+31,31),
e (0,21,A31), |A| €(0,1),
e (0,A21431,-21+A31), A>0.
o If ¢ admits a positive grading ¢ = ©;>1 &, [¢,§] C &,
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o Using the theorem it easy to classify the (2, 3)-trivial
algebras in small dimensions. Up to dimension 3 we have
. (0,21),
e (0,21+31,31),
e (0,21,A31), |A| €(0,1),
e (0,A21431,-21+A31), A>0.
o If ¢ admits a positive grading ¢ = ©;>1 ¢, [¢, ¢] C €, then
t = ¢’ for some (2, 3)-trivial algebra g.
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(2,3)-TRIVIAL LIE ALGEBRAS II

o Using the theorem it easy to classify the (2, 3)-trivial
algebras in small dimensions. Up to dimension 3 we have
. (0,21),
e (0,21 +31,31),
e (0,21,A31), |A| €(0,1),
e (0,A21+31,—21+A31), A>0.
o If ¢ admits a positive grading ¢ = ©;>1 ¢, [¢, ¢] C €, then
t = ¢’ for some (2, 3)-trivial algebra g.
¢ Nilpotent algebras of maximal rank, as studied in
association with Kac-Moody algebras, fall in to this class.
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(2,3)-TRIVIAL LIE ALGEBRAS II

o Using the theorem it easy to classify the (2, 3)-trivial
algebras in small dimensions. Up to dimension 3 we have
. (0,21),
e (0,21+31,31),
e (0,21,A31), |A| €(0,1),
e (0,A21431,-21+A31), A>0.
o If ¢ admits a positive grading ¢ = ©;>1 ¢, [¢, ¢] C €, then
t = ¢’ for some (2, 3)-trivial algebra g.
¢ Nilpotent algebras of maximal rank, as studied in
association with Kac-Moody algebras, fall in to this class.
o All nilpotent algebras of dimension at most 6 admit a
positive grading.
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e There exist 7-dimensional nilpotent Lie algebras n with
Der(n) nilpotent.
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o Using the theorem it easy to classify the (2, 3)-trivial
algebras in small dimensions. Up to dimension 3 we have
. (0,21),
e (0,21 +31,31),
e (0,21,A31), |A| €(0,1),
e (0,A21+31,—21+A31), A>0.
o If ¢ admits a positive grading ¢ = ©;>1 ¢, [¢, ¢] C €, then
t = ¢’ for some (2, 3)-trivial algebra g.
¢ Nilpotent algebras of maximal rank, as studied in
association with Kac-Moody algebras, fall in to this class.
o All nilpotent algebras of dimension at most 6 admit a
positive grading.
e There exist 7-dimensional nilpotent Lie algebras n with
Der(n) nilpotent. These can not be the derived algebra of
a (2,3)-trivial Lie algebra.
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(2,3)-

TRIVIAL LIE ALGEBRAS II

Using the theorem it easy to classify the (2, 3)-trivial
algebras in small dimensions. Up to dimension 3 we have
. (0,21),
e (0,21 +31,31),
e (0,21,A31), |A| €(0,1),
e (0,A21+31,—21+A31), A>0.
If ¢ admits a positive grading ¢ = @;>1 ¢, [¢;, ¢] C £y, then
t = ¢’ for some (2, 3)-trivial algebra g.
¢ Nilpotent algebras of maximal rank, as studied in
association with Kac-Moody algebras, fall in to this class.
o All nilpotent algebras of dimension at most 6 admit a
positive grading.
There exist 7-dimensional nilpotent Lie algebras n with
Der(n) nilpotent. These can not be the derived algebra of
a (2,3)-trivial Lie algebra.
There exist unimodular (2, 3)-trivial Lie groups admitting
compact discrete quotients (dim G > 5).
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Let (M7, g, $) be a manifold with holonomy G,,



BACKGROUND MULTI-MOMENT GZ HOLONOMY SUMMARY REDUCTION FOUR-DIMENSIONAL GEOMETRY

Gz STRUCTURES WITH TORUS SYMMETRY

Let (M7, g, ¢) be a manifold with holonomy G,, meaning that
d¢ = 0, d+¢ = 0 and that at each point there is an orthonormal
coframe such that

¢ = e123 + €145 + €167 + €246 — €257 — €356 — €347.
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Gz STRUCTURES WITH TORUS SYMMETRY

Let (M7, g, ¢) be a manifold with holonomy G,, meaning that
d¢ = 0, d+¢ = 0 and that at each point there is an orthonormal
coframe such that

¢ = e123 + €145 + €167 + €246 — €257 — €356 — €347.
The metric g is then Ricci-flat with holonomy contained in G,.

Suppose T? acts preserving the G,-structure, generated by U,.
Then a multi-moment map v exists, e.g. if b; (M) = 0, and

2
¢ =hwoNdv+dv A Ab+ ) 6 Aw;
i=1

with

wo = Uy 21Uy 2 x¢p, w;= u; a9, (guugvv _g%lV) W =1.
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2
¢ =HwgNdv+dv A NG+ ) 60 Aw;
i=1

Let X = v~ 1(¢t).



2
¢ =HwgNdv+dv A NG+ ) 60 Aw;
i=1

Let X = v~ !(t). Suppose T? acts freely and put M = X /T
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REDUCTION OF G, STRUCTURES

2
¢ =hwoNdv+dv NG A+ Y 0 Aw;
i=1

Let X = v~!(t). Suppose T? acts freely and put M = X /T>.

ProrosiTION

The half-flat SU(3)-manifold X
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REDUCTION OF G, STRUCTURES

2
¢ =hwoNdv+dv NG A+ Y 0 Aw;
i=1

Let X = v~!(t). Suppose T? acts freely and put M = X /T>.

PROPOSITION

The halfflat SU(3)-manifold X is a principal T?>-bundle over M*
with 0; as connection one forms. The forms wj, j = 0,1,2, descend to
M?* as pointwise linearly independent symplectic forms that are
self-dual for the induced metric.
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REDUCTION OF G, STRUCTURES

2
¢ =hwoNdv+dv NG A+ Y 0 Aw;
i=1

Let X = v~!(t). Suppose T? acts freely and put M = X /T>.

ProrosiTION

The halfflat SU(3)-manifold X is a principal T?>-bundle over M*
with 0; as connection one forms. The forms wj, j = 0,1,2, descend to
M?* as pointwise linearly independent symplectic forms that are
self-dual for the induced metric.

One has

2 2 -1 2 -1 2
h*wo” = g w1~ = gyy w2” = 2voly,
wo/\w1:0:w0/\w2, wl/\QJQZZguvvolM.
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A = spang{wy, w1, wy} defines a conformal structure C on
M=,
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FOUR-DIMENSIONAL GEOMETRY

A4 = spang{wy, w1, w,} defines a conformal structure C on
M?*. Call such a triple of symplectic forms coherent
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A4 = spang{wy, w1, w,} defines a conformal structure C on
M?*. Call such a triple of symplectic forms coherent if
woAw; =0,i=1,2,and Q = ((w;, wj))i =1, is positive
definite.
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A4 = spang{wy, w1, w,} defines a conformal structure C on
M?*. Call such a triple of symplectic forms coherent if
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ProrosiTION

Suppose (wj,j = 0,1,2) is a coherent triple of symplectic forms on
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O'Ihwo—l—]’lflel/\@z, Py =wi AOp+wr ABy,
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defines a half-flat SU(3)-structure on X if and only if
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FOUR-DIMENSIONAL GEOMETRY

A4 = spang{wy, w1, w,} defines a conformal structure C on
M?*. Call such a triple of symplectic forms coherent if

woAw; =0,i=1,2,and Q = ((w;, wj))i =1, is positive
definite. Write h = \/detQ and let g € C satisfy h*w} = 2 vol,.

ProrosiTION

Suppose (wj,j = 0,1,2) is a coherent triple of symplectic forms on
M?*. Let X — M be a T?>-bundle with connection one-forms 0;,
i=1,2. Then

a:ha)o—i—h’lQl/\Hz, Py =wi AOp+wr ABy,

defines a half-flat SU(3)-structure on X if and only if
(d6;f,d63) = (w1, wy)A with (A, Q) = 0.
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(2001).
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with holonomy Gy on an open neighbourhood of X x {0} in X x R.
Every G, holonomy structure with effective T> symmetry arises in
this way.

The related flow with & = 1 has been studied by Hitchin
(2001). However, it does not preserve the multi-moment map
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LIFTING

THEOREM
If the data on M* is analytic, then the flow

¢y =d(ho)  (30°) = —d(hy-)

with initial data (X, o, ) defined above defines a unique metric
with holonomy Gy on an open neighbourhood of X x {0} in X x R.
Every G, holonomy structure with effective T> symmetry arises in
this way.

The related flow with & = 1 has been studied by Hitchin
(2001). However, it does not preserve the multi-moment map
structure. Bryant (2010) has provided examples of initial data
for the Hitchin flow that have no solution.
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ExXAMPLE

M* — T*/{£1} a Kummer surface, with w. = w; + iw,
complex symplectic and integral.
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M* — T*/{£1} a Kummer surface, with w. = w; + iw,
complex symplectic and integral. Let wq be any compatible
Kézhler form. Then the T2-bundle with curvatures (w, —w1)
carries half-flat SU(3)-structures on its total space for each
choice of compatible conformal structure on M*.
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M* — T*/{£1} a Kummer surface, with w. = w; + iw,
complex symplectic and integral. Let wq be any compatible
Kézhler form. Then the T2-bundle with curvatures (w, —w1)
carries half-flat SU(3)-structures on its total space for each
choice of compatible conformal structure on M*. Any analytic
choice of w; gives a flow to a holonomy G,-metric.

More general than Apostolov and Salamon (2004): we do not
need a hyperKihler triple w;.
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complex symplectic and integral. Let wq be any compatible
Kihler form. Then the T2-bundle with curvatures (wa, —w1)
carries half-flat SU(3)-structures on its total space for each
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need a hyperKdihler triple w;. However, if the triple is
hyperKéhler we can be explicit.

ANDREW SWANN MOMENT MAP GEOMETRY FOR THREE-FORMS



BACKGROUND MULTI-MOMENT GZ HOLONOMY SUMMARY REDUCTION FOUR-DIMENSIONAL GEOMETRY

ExXAMPLE

M* — T*/{£1} a Kummer surface, with w. = w; + iw,
complex symplectic and integral. Let wq be any compatible
Kihler form. Then the T2-bundle with curvatures (wa, —w1)
carries half-flat SU(3)-structures on its total space for each
choice of compatible conformal structure on M*. Any analytic
choice of w; gives a flow to a holonomy G,-metric.

More general than Apostolov and Salamon (2004): we do not
need a hyperKdihler triple w;. However, if the triple is
hyperKéhler we can be explicit.

Donaldson (2006) asks whether the underlying compact
manifold is always hyperKéhler.
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SUMMARY

e Multi-moment maps are defined v: (M, c) — 739* , where
Py = ker([-,]: A2g — g).

e These take values in a vector space and exist under weak
topological assumptions on M or under cohomological
assumptions on g.
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SUMMARY

e Multi-moment maps are defined v: (M, c) — Pg , where
Py = ker([-,]: A2g — g).

e These take values in a vector space and exist under weak
topological assumptions on M or under cohomological
assumptions on g.

e Homogeneous examples may be described via orbits in
A" g*.

e (2,3)-trivial Lie algebras may be classified in small
dimensions and described and as certain one-dimensional
solvable extensions of nilpotent algebras in general.

e G, holonomy manifolds with T2-symmetry correspond

via multi-moment map reduction to coherent symplectic
triples on M*.
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