HyperKähler manifolds with Abelian symmetry

Andrew Swann

Department of Mathematics, University of Aarhus

June 2016 / GQT, Zeist

Outline

2 DIMENSION FOUR

3 Toric hyperKähler

4 HyperKähler to hyperKähler

HyperKähler manifolds

 $(M, \omega_I, \omega_J, \omega_K)$ is *hyperKähler* if:

- each ω_A is a symplectic two-form: $d\omega_A = 0$ and ω_A is non-degenerate,
- **2** the tangent bundle endomorphisms $I = \omega_K^{-1} \omega_I$,

$$J = \omega_I^{-1} \omega_K, K = \omega_J^{-1} \omega_I \text{ satisfy}$$

• $I^2 = -1 = J^2 = K^2, IJ = K = -JI$, etc., and
• $g = -\omega_A(A \cdot, \cdot)$ is independent of A and positive definite.

Consequences

• dim
$$M = 4n$$
,

- $a\omega_I + b\omega_J + c\omega_K = g(\mathcal{I}_{a,b,c} \cdot, \cdot)$ is symplectic for each $(a, b, c) \in S^2$, $\mathcal{I}_{a,b,c} = aI + bJ + cK$,
- (Hitchin et al. 1987) $\mathcal{I}_{a,b,c}$ are integrable complex structures,
- *g* is Ricci-flat, with holonomy contained in $Sp(n) \leq SU(2n)$.

Symmetry considerations

Ricci-flatness implies:

- if *M* is compact, then any Killing vector field is parallel, so the holonomy of *M* reduces and *M* splits as a product,
- if *M* is homogeneous then *g* is flat, so *M* is a quotient of flat R⁴ⁿ by a discrete group (Alekseevskiĭ and Kimel'fel'd 1975).

Concentrate on complete (non-compact) hyperKähler manifolds with an Abelian group *G* of symmetries preserving each symplectic structure: tri-holomorphic isometries. Assume the action is *tri-Hamiltonian*, so there is a *hyperKähler moment map*: a *G*-invariant map

$$\mu = (\mu_I, \mu_J, \mu_K) \colon M \to \mathbb{R}^3 \otimes \mathfrak{g}^*$$

with $d\langle \mu_A, X \rangle = X \,\lrcorner \, \omega_A$.

нК 4D toric нК-нК

GIBBONS-HAWKING ANSATZ

X a tri-Hamiltonian vector field on hyperKähler M^4 Away from M^X , locally

$$g = \frac{1}{V}(dt + \omega)^2 + V(dx^2 + dy^2 + dz^2)$$

where V = 1/g(X, X), $dx = X \,\lrcorner \, \omega_I = d\mu_I$, etc., and

$$d\omega = -*_3 dV$$

on \mathbb{R}^3 . In particular,

- μ = (μ_I, μ_J, μ_K) is locally a conformal submersion to (ℝ³, dx² + dy² + dz²),
- *V* is locally a harmonic function on \mathbb{R}^3 .

Examples

$$V(p) = c + \frac{1}{2} \sum_{i \in \mathbb{Z}} \frac{1}{\|p - p_i\|}, \quad c \ge 0, \quad p_i \in \mathbb{R}^3 \text{ distinct}$$

• c = 0, $|Z| < \infty$: multi-Euguchi Hanson metrics

Z	1	2	•••
space	flat \mathbb{R}^4	$T^* \mathbb{CP}(1)$	

• c > 0, $|Z| < \infty$: multi-Taub-NUT metrics

$$\begin{array}{c|cccc} |Z| & 0 & 1 & 2 & \dots \\ \text{space} & \text{flat } S^1 \times \mathbb{R}^3 & \text{Taub-NUT } \mathbb{R}^4 & T^* \mathbb{CP}(1) & \dots \end{array}$$

• *Z* countably infinite: require V(p) to converge at some $p \in \mathbb{R}^3$, get A_{∞} metrics (Anderson et al. 1989; Goto 1994), e.g. $Z = \mathbb{N}_{>0}$, $p_n = (1/n^2, 0, 0)$, and their Taub-NUT deformations.

CLASSIFICATION

Theorem

The potentials

$$V(p) = c + rac{1}{2} \sum_{i \in Z} rac{1}{\|p - p_i\|}, \qquad c \geqslant 0, \quad p_i \in \mathbb{R}^3 \ distinct,$$

with $0 < V(p) < \infty$ for some $p \in \mathbb{R}^3$, classify all complete hyperKähler four-manifolds with tri-Hamiltonian circle action.

When $|Z| < \infty$, this is due to Bielawski (1999), and the first parts of the proof are essentially the same.

PROOF STRUCTURE

Local considerations

- The only special orbits are fixed points
- $\mu: M/S^1 \to \mathbb{R}^3$ is a local homeomorphism, even at fixed points
- locally near a fixed point *x*,

$$V(\mu(y)) = \frac{1}{2} \frac{1}{\|\mu(y) - \mu(x)\|} + \phi(\mu(y))$$

with $\phi \ge 0$ harmonic (Bôcher's Theorem plus a Chern class argument).

Proof structure 2

Injectivity of μ Let $M' = M \setminus M^X$ be the set on which S^1 acts freely. μ induces a conformal local diffeomorphism

$$\overline{\mu}\colon (N=M'/S^1, V(dx^2+dy^2+dz^2)) \to \mu(M') \subset (\mathbb{R}^3, g_{\mathbb{R}^3}).$$

Near each fixed point $x \in M^X$, $V = \phi + 1/2r$ and we may replace V by $\overline{V} > 0$, $\overline{V} \propto 1/2r^2$ and superharmonic, so that $(N, \overline{V}(dx^2 + dy^2 + dz^2))$ is complete with non-negative scalar curvature.

Schoen and Yau (1994) implies that $\overline{\mu} \colon N \to \mathbb{R}^3$ is injective and that the boundary $\partial \Omega$ of $\Omega = \overline{\mu}(N) = \mu(M')$ is polar, i.e. bounded harmonic functions have unique extension across $\partial \Omega$.

Proof structure 3

Martin boundary

 $\Omega = \mu(M')$ having polar boundary implies $\Omega \subset \mathbb{R}^3$ is dense with Green's functions G(p,q) = 1/||p-q||. Assuming $p_0 = 0 \in \Omega$, the Martin kernel is

$$M(p,q) = \frac{G(p,q)}{G(p_0,q)} = \frac{\|q\|}{\|p-q\|}, \quad p,q \in \Omega.$$

The minimal Martin boundary

$$\Delta = \left\{ \lim_{q'} (p \mapsto M(p,q')) : q' \to q \notin \Omega \right\}$$
$$\Delta = \partial \Omega \cup \{\infty\}.$$

is

Proof structure 4

Potential theory

V is positive harmonic on $\Omega = \mu(M')$, so there is a positive measure $d\mu_V(q)$ such that

$$V(p) = \int_{\Delta = \partial \Omega \cup \{\infty\}} M(p,q) \, d\mu_V(q).$$

 $F = \mu(M^X)$ is discrete, so Borel, and contained in $\partial \Omega$, so

$$W(p) = \int_{F} M(p,q) \, d\mu_{V}(q) = \frac{1}{2} \sum_{q \in F} \frac{1}{\|p-q\|}$$

is positive harmonic and finite on Ω , so *F* has no accumulation points.

Completeness of *M* gives $\partial \Omega \setminus F$ is then empty. So $\Delta = F \cup \{\infty\}$ and V = W + c, $c \ge 0$ constant.

TORIC HYPERKÄHLER

(with Andrew Dancer)

 M^{4n} complete hyperKähler with tri-Hamiltonian action of T^n . Is given locally be the Pedersen-Poon Ansatz:

$$g = (V^{-1})_{ij}(dt + \omega_i)(dt + \omega_j) + V_{ij}(dx_i dx_j + dy_i dy_j + dz_i dz_j),$$

with $V_{ij} = \frac{\partial^2 F}{\partial x_i \partial x_j}$ with *F* a positive function on $\mathbb{R}^3 \otimes \mathbb{R}^n$ harmonic on every affine three-plane $X_{a,v} = a + \mathbb{R}^3 \otimes v$.

For generic $X_{a,v}$, then $Y = \mu^{-1}(X_{a,v})$ is smooth with free T^{n-1} action, Y/T^{n-1} is complete hyperKähler with S^1 -action. Above analysis then fixes V on $X_{a,v}$, and F, providing a classification.

HK 4D TORIC HK-HK

HyperKähler modification

 (N^4, μ^N, g^N, X^N) a complete hyperKähler four-manifold with tri-Hamiltionian X^N .

X is a tri-Hamiltonian circle action on hyperKähler (M, g, I, J, K) of arbitrary dimension. The *hyperKähler modification* of *M* by *N* is

$$M_{\text{Nmod}} = (M \times N) / / (X' = X - X^N) = (\mu - \mu^N)^{-1}(0) / X'.$$

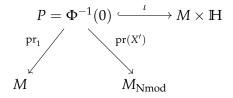
- $\dim M_{\mathrm{Nmod}} = \dim M$
- *M* complete, then *M*_{Nmod} complete
- $\pi_1(M) = 0$, then $b_2(M_{\text{Nmod}}) =$ $1 + b_2(M) + b_2(N)$

Example

 $M = \mathbb{H} = N, X = X^{N}$ generating $e^{it}q$, $\mu = \mu_{\mathbb{H}} + c$, $\mu_{\mathbb{H}} = \overline{q}iq$, $c \neq 0$: $M_{\text{Nmod}} = T^* \mathbb{CP}(1)$ hK 4d toric **hK-hK**

A DOUBLE FIBRATION

For
$$\Phi = \mu - \mu^N$$
, $X' = X - X^N$:



- $\operatorname{pr}(X')$ is a Riemannian submersion for $\iota^*(g + g_{\mathbb{H}})$
- pr₁ is *not* a Riemannian submersion, it induces the metric \tilde{g} on *M*:

$$\tilde{g} = g + V^N(\mu)g_{\alpha}, \qquad g_{\alpha} = \alpha_0^2 + \alpha_I^2 + \alpha_J^2 + \alpha_K^2$$

 $\alpha_0 = X^{\flat} = g(X, \cdot), \, \alpha_I = I\alpha_0 = -\alpha_0(I \cdot)$ etc.

HK 4D TORIC HK-HK

ELEMENTARY DEFORMATIONS

 $\tilde{g} = g + V^N(\mu)g_\alpha,$

g hyperKähler, X an isometry, $\alpha_0 = X^{\flat}$, $g_{\alpha} = \alpha_0^2 + \alpha_I^2 + \alpha_K^2 + \alpha_K^2$

Definition

An *elementary deformation* \tilde{g} of g with respect to X is

$$\tilde{g} = fg + hg_{\alpha}$$

for some $f, h \in C^{\infty}(M)$

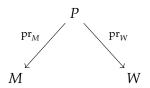
Which elementary deformations define new hyperKähler metrics through such a double fibration picture?

Twist construction

Twist data

- *M* manifold
- $X \in \mathfrak{X}(M)$, circle action
- $F \in \Omega^2_{\mathbb{Z}}(M)^X$

•
$$a \in C^{\infty}(M)$$
 with $da = -X \,\lrcorner F$



horizontal distribution $\mathcal{H} = \ker \theta \subset TP$

 α tensor on *M* is *H*-related to α_W on *W* if

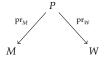
$$\operatorname{pr}_M^* \alpha = \operatorname{pr}_W^* \alpha_W \quad \text{on } \mathcal{H}$$

Write $\alpha \sim_{\mathcal{H}} \alpha_W$

Twist computations

$$\alpha \sim_{\mathcal{H}} \alpha_W$$
 if $\operatorname{pr}_M^* \alpha = \operatorname{pr}_W^* \alpha_W$ on $\mathcal{H} = \ker \theta$

•
$$\alpha \in \Omega^p(M)$$
: $d\alpha_W \sim_{\mathcal{H}} d\alpha - \frac{1}{a}F \wedge (X \lrcorner \alpha)$



• *I* complex structure on *M*: I_W integrable if and only if $F \in \Lambda_I^{1,1}$

Example

 $M = M(n) := \mathbb{C}P^n \times T^2$ Kähler, X on T^2 , $F = \omega_{FS}$: $W = S^{2n+1} \times S^1$ Hermitian non-Kähler.

Example

 $M = T^n$, *F* left-invariant: *W* is a nilmanifold corresponding to $\mathfrak{g}^* = (0^{n-1}, F).$ HK 4D TORIC HK-HK

TRI-HAMILTONIAN ACTIONS

(M, g) hyperKähler, dim M > 4, X tri-Hamiltonian with moment map $\mu = (\mu_I, \mu_J, \mu_K)$

Theorem

An elementary deformation $\tilde{g} = fg + hg_{\alpha}$ twists via (X, F, a) to a hyperKähler metric g_W if and only if

- f constant, so take $f \equiv 1$,
- $h = h(\mu_I, \mu_J, \mu_K)$ is harmonic in $U \subset \mathbb{R}^3$,
- $F = d(h\alpha_0) + *_3 dh$,
- $a = 1 + h \|X\|^2 \neq 0.$

HyperKähler modification is $h = V^N(\mu)$

Proof method

1
$$\omega_I^W \sim_{\mathcal{H}} \omega_I^N = f\omega_I + h\omega_I^\alpha$$

2 impose $d\omega_I^W = 0$,
i.e. $d\omega_I^N - \frac{1}{a}F \wedge (X \sqcup \omega_I^N) = 0$

$$\begin{array}{l} \textbf{3} \text{ impose} \\ da = -X \,\lrcorner\, F \end{array}$$

4 impose dF = 0

INVERSION

Generally: Twist of *M* by data (X, F, a) to *W* is inverted by twist data on *W* \mathcal{H} -related to $(\frac{1}{a}X, -\frac{1}{a}F, \frac{1}{a})$.

PROPOSITION

The hyperKähler twist above of the elementary deformation $\tilde{g} = g + hg_{\alpha}$ of g corresponding to h is inverted by the elementary deformation of g_W corresponding to -h.

 Modification by N = H, V^N = 1/2 ||µ||, is inverted by h = -1/(2||µ||). To get positive definite, need ||X||² < 2||µ||. So flat ℝ⁴ is *not* a modification. • h > 0: inversion corresponds to hyperKähler quotient of $(M \times N^4, g \oplus -g^N(h)),$ quaternionic Lorentzian

References

References I

Alekseevskiĭ, D. V. and B. N. Kimel'fel'd (1975), 'Structure of
homogeneous Riemannian spaces with zero Ricci curvature',
Funktsional. Anal. i Prilozhen. 9:2, pp. 5–11, trans. as,
Functional Anal. Appl. 9:2, pp. 97–102.
Anderson, M. T., P. B. Kronheimer and C. LeBrun (1989),
'Complete Ricci-flat Kähler manifolds of infinite topological
type', Comm. Math. Phys. 125:4, pp. 637–642.
Bielawski, R. (1999), 'Complete hyper-Kähler 4n-manifolds
with a local tri-Hamiltonian \mathbb{R}^n -action', <i>Math. Ann.</i> 314 :3,
рр. 505–528.
Goto, R. (1994), 'On hyper-Kähler manifolds of type A_{∞} ',

Geometric and Funct. Anal. **4**, pp. 424–454.

References

References II

- Hitchin, N. J., A. Karlhede, U. Lindström and M. Roček (1987), 'HyperKähler metrics and supersymmetry', *Comm. Math. Phys.* 108, pp. 535–589.
- Schoen, R. and S.-T. Yau (1994), Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, Translated from the Chinese by Ding and S. Y. Cheng, Preface translated from the Chinese by Kaising Tso, International Press, Cambridge, MA, pp. v+235.
- Swann, A. F. (2010), 'Twisting Hermitian and hypercomplex geometries', *Duke Math. J.* 155:2, pp. 403–431.
 - (2015), 'Twists versus modifications', arXiv: 1512.06343 [math.DG].