Twist geometry of elementary deformations

Andrew Swann

Department of Mathematics, University of Aarhus

March 2014 / Greifswald

Happy Birthday, Helga Baum!

Joint work with Óscar Maciá (Valencia)

OUTLINE

2 HyperKähler Modifications HyperKähler geometry HyperKähler modifications Double fibration

3 ELEMENTARY DEFORMATIONS Tri-holomorphic actions Rotating actions

Twist construction

- $P \rightarrow M$ a principal *S*¹-bundle, symmetry *Y*, connection 1-form θ , curvature $\operatorname{pr}_M^* F = d\theta$
- $X \in \mathfrak{X}(M)$ generating S^1 -action preserving F
- $X' = \tilde{X} + aY$ on *P* preserving θ and $Y: \tilde{X} \in \mathcal{H} = \ker \theta$, $(\operatorname{pr}_M)_* \tilde{X} = X$, and $da = -X \,\lrcorner F$
- W = P/X', has action induced by Y

Twist data

Twist data

- *M* manifold
- $X \in \mathfrak{X}(M)$, circle action
- $F \in \Omega^2_{\mathbb{Z}}(M)^X$

•
$$a \in C^{\infty}(M)$$
 with $da = -X \,\lrcorner F$

horizontal distribution $\mathcal{H} = \ker \theta \subset TP$

Definition

 α tensor on *M* is *H*-related to α_W on *W* if

$$\operatorname{pr}_M^* \alpha = \operatorname{pr}_W^* \alpha_W$$
 on \mathcal{H}

Write $\alpha \sim_{\mathcal{H}} \alpha_W$

Twist computations

$$\alpha \sim_{\mathcal{H}} \alpha_{W} \text{ if } \operatorname{pr}_{M}^{*} \alpha = \operatorname{pr}_{W}^{*} \alpha_{W} \text{ on } \mathcal{H} = \ker \theta$$

$$\bullet \alpha \in \Omega^{p}(M):$$

$$d\alpha_W \sim_{\mathcal{H}} d_W \alpha \coloneqq d\alpha - \frac{1}{a} F \wedge (X \,\lrcorner\, \alpha)$$

п

• *I* complex structure on *M*:
$$I_W$$
 integrable if and only if $F \in \Lambda_I^{1,1}$

Example

$$M = M(n) := \mathbb{C}\mathbb{P}^n \times T^2$$
 Kähler, X on T^2 , $F = \omega_{FS}$:
 $W = S^{2n+1} \times S^1$ non-Kähler.

How can we get Kähler, hyperKähler,...?

HyperKähler geometry

 M^{4n} hyperKähler: g (pseudo-)Riemannian metric, *I*, *J*, *K*: *TM* \rightarrow *TM* bundle endomorphisms with

•
$$I^2 = -1 = J^2 = K^2$$
, $IJ = K = -JI$

•
$$g(IX, IY) = g(X, Y)$$
 etc. and

•
$$\omega_I(X, Y) = g(IX, Y)$$
 etc. satisfy

$$d\omega_I = 0 = d\omega_J = d\omega_K$$

Then

- *g* is Ricci-flat,
- $\operatorname{Hol}_0(g) \leq Sp(n)$ and
- *I*, *J*, *K* are integrable.

HyperKähler quotients

Suppose *X* is a tri-holomorphic isometry of (M, g, I, J, K), $L_Xg = 0$, $L_XI = 0 = L_XJ = L_XK$, generating a circle action.

A *hyperKähler moment map* for X is $\mu = (\mu_I, \mu_J, \mu_K) \colon M \to \mathbb{R}^3$ such that

$$d\mu = (X \,\lrcorner\, \omega_I, X \,\lrcorner\, \omega_J, X \,\lrcorner\, \omega_K)$$

X is then *tri-Hamiltonian*

Theorem (Hitchin, Karlhede, Lindström and Roček 1987)

If X acts freely on $\mu^{-1}(0)$ *, then*

$$M/\!\!/ X = \mu^{-1}(0) / X$$

is a smooth hyperKähler manifold of dimension dim M - 4.

HyperKähler modifications

Definition (Dancer-S)

The hyperKähler modification of M is

$$M_{\text{mod}} = (M \times \mathbb{H}) / / (X' = X - \frac{\partial}{\partial \theta})$$

where $\frac{\partial}{\partial \theta}$ generates $q \mapsto e^{i\theta}q$ on $\mathbb{H} = \mathbb{R}^4$.

- $\dim M_{\mathrm{mod}} = \dim M$
- *M* complete, then *M*_{mod} complete
- $\pi_1(M) = 0$, then $b_2(M_{\text{mod}}) = b_2(M) + 1$

Example

$$M = \mathbb{H}, X = \frac{\partial}{\partial \theta}, \mu = \mu_{\mathbb{H}} + c, c \neq 0$$
: $M_{\text{mod}} = T^* \mathbb{CP}(1)$

Which hyperKähler metrics are modifications?

A DOUBLE FIBRATION

For
$$\Phi = \mu - \mu_{\mathbb{H}}$$
, $X' = X - \frac{\partial}{\partial \theta}$:

- $\operatorname{pr}(X')$ is a Riemannian submersion for $\iota^*(g + g_{\mathbb{H}})$
- pr_1 is *not* a Riemannian submersion, it induces the metric g^N on M:

$$g^{N} = g + \frac{1}{2\|\mu\|} g_{\alpha}, \qquad g_{\alpha} = \alpha_{0}^{2} + \alpha_{I}^{2} + \alpha_{K}^{2} + \alpha_{K}^{2}$$
$$\alpha_{0} = X^{\flat} = g(X, \cdot), \, \alpha_{I} = I\alpha_{0} = -\alpha_{0}(I \cdot) \text{ etc.}$$

ELEMENTARY DEFORMATIONS

g hyperKähler, *X* an isometry, $\alpha_0 = X^{\flat}$, $g_{\alpha} = \alpha_0^2 + \alpha_I^2 + \alpha_I^2 + \alpha_K^2$

Definition

An *elementary deformation* g^N of g with respect to X is

$$g^N = fg + hg_{\alpha}$$

for some $f, h \in C^{\infty}(M)$

There are only two cases for *X*

- 1 tri-holomorphic: $L_X I = 0 = L_X J = L_X K$
- **2** rotating: $L_X I = 0$, $L_X J = K$

TRI-HOLOMORPHIC ACTIONS

g hyperKähler, *X* tri-holomorphic, dim M > 4Locally *X* is tri-Hamiltonian with moment map $\mu = (\mu_I, \mu_I, \mu_K)$

THEOREM (S)

An elementary deformation $g^N = fg + hg_{\alpha}$ twists via (X, F, a) to a hyperKähler metric g_W if and only if

- f constant, so take $f \equiv 1$,
- $h = h(\mu_I, \mu_J, \mu_K)$ is harmonic
- $F = d(h\alpha_0) + *_3dh$
- $a = 1 + h \|X\|^2 \neq 0$

Proof method

$$\mathbf{1} \quad \omega_I^W \sim_{\mathcal{H}} \omega_I^N = \\ f \omega_I + h \omega_I^\alpha$$

2 impose $d\omega_I^W = 0$, i.e. $d_W \omega_I^N = 0$

3 impose $da = -X \,\lrcorner F$

4 impose dF = 0

g hyperKähler, X tri-Hamiltonian, $g^N = g + hg_{\alpha}$, *h* harmonic

Example

HyperKähler modification is $h = 1/(2||\mu||)$

EXAMPLE

Taub-NUT deformation $W = (M \times (S^1 \times \mathbb{R}^3)) / S^1$, diffeomorphic to M, is $h \equiv 1$

EXAMPLE

h > 0: Z^4 , $g_Z(h) = \frac{1}{h}(dt + \omega)^2 + h(dx^2 + dy^2 + dz^2)$, $d\omega = *_3 dh$ is a general hyperKähler 4-manifold with free tri-Hamiltonian action and $W = (M \times Z) / / S^1$

INVERSION

Generally: Twist of *M* by data (X, F, a) to *W* is inverted by twist data on *W* \mathcal{H} -related to $(\frac{1}{a}X, -\frac{1}{a}F, \frac{1}{a})$.

PROPOSITION (S)

HyperKähler twists above of the elementary deformation $g^N = g + hg_{\alpha}$ of g corresponding to h is inverted by the elementary deformation of g_W corresponding to -h.

- Modification inverted by *h* = −1/(2||µ||). To get positive definite, need ||X||² < 2||µ||. So flat ℝ⁴ is *not* a modification.
- Taub-NUT deformation if and only if ||X|| is bounded.

• h > 0: inversion corresponds to hyperKähler quotient of $(M \times Z^4, g \times -g_Z(h))$. quaternionic Lorentzian

STRONG HKT

strong HKT: (g, I, J, K) with

- $Id\omega_I = Jd\omega_J = Kd\omega_K =: -c$ and
- dc = 0

PROPOSITION

g hyperKähler, X tri-Hamiltonian, rank $d\alpha_0 \ge 16$. An elementary deformation $g^N = fg + hg_{\alpha}$ twists via (X, F, a) to a strong HKT metric g_W if and only if

- f constant, so take $f \equiv 1$,
- $h = h(\mu_I, \mu_J, \mu_K)$ is harmonic
- $F = d(h\alpha_0)$
- $a = 1 + h \|X\|^2 \neq 0$

Cf. hyperKähler twist $F = d(h\alpha_0) + *_3 dh$.

ROTATING ACTIONS

g hyperKähler, dim M > 4, $L_X I = 0$, $L_X J = K$ Locally there is a Kähler moment map $\mu : M \to \mathbb{R}$ for (ω_I, X) .

Theorem (Maciá-S)

For X non-null, an elementary deformation $g^N = fg + hg_{\alpha}$ twists to quaternionic Kähler if and only if

- $f = 1/(\mu c)$
- $h = -1/(\mu c)^2$

•
$$F = d\alpha_0 + \omega_I$$

•
$$a = ||X||^2 - \mu + c$$

This is the hK/qK correspondence Haydys 2008; Alexandrov, Persson and Pioline 2011; Hitchin 2013; Alekseevsky, Cortés, Dyckmanns and Mohaupt 2013. In the c-map context, g has signature (4n, 4), but g^N is positive definite.

Show quaternionic Kähler by $d\Omega = 0$

$$\Omega = \omega_I^2 + \omega_J^2 + \omega_K^2$$

provided dim $M \ge 12$. For dim M = 8, show

$$d\begin{pmatrix}\omega_I\\\omega_J\\\omega_K\end{pmatrix} = A \land \begin{pmatrix}\omega_I\\\omega_J\\\omega_K\end{pmatrix}$$

for some $A \in \Omega^1 \otimes \mathfrak{so}(3)$.

References

References I

- Alekseevsky, D. V., V. Cortés, M. Dyckmanns and T. Mohaupt (2013), "Quaternionic Kähler metrics associated with special Kähler manifolds", arXiv: 1305.3549 [math.DG].
 Alexandrov, S., D. Persson and B. Pioline (2011), "(Multi exercise Research differentiation and the OK (UK)
 - "Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence", *J. High Energy Physics* **2011**:12, pp. 027, i, 64.
- Dancer, A. S. and A. F. Swann (2006), "Modifying hyperkähler manifolds with circle symmetry", *Asian J. Math.* 10:4, pp. 815–826.
- Haydys, A. (2008), "HyperKähler and quaternionic Kähler manifolds with S¹-symmetries", J. Geom. Phys. 58:3, pp. 293–306.

References

References II

- Hitchin, N. J. (2013), "On the hyperkähler/quaternion Kähler correspondence", *Commun. Math. Phys.* 324:1, pp. 77–106.
 Hitchin, N. J., A. Karlhede, U. Lindström and M. Roček (1987), "HyperKähler metrics and supersymmetry", *Comm. Math. Phys.* 108, pp. 535–589.
 Maciá, Ó. and A. F. Swann (2014), "Twist geometry of the
 - c-map", in preparation.
 - Swann, A. F. (2010), "Twisting Hermitian and hypercomplex geometries", *Duke Math. J.* 155:2, pp. 403–431.
 - (2014), "Twists versus modifications", in preparation.