TWIST GEOMETRY OF ELEMENTARY DEFORMATIONS

Andrew Swann
Department of Mathematics, University of Aarhus

March 2014 / Greifswald

Happy Birthday, Helga Baum!

Joint work with Óscar Maciá (Valencia)

Outline

(1) Twist construction
(2) HyperKÄHLER MODIfications

HyperKähler geometry
HyperKähler modifications
Double fibration
(3) Elementary deformations Tri-holomorphic actions Rotating actions

Twist construction

- $P \rightarrow M$ a principal S^{1}-bundle, symmetry Y, connection 1-form θ, curvature $\operatorname{pr}_{M}^{*} F=d \theta$
- $X \in \mathfrak{X}(M)$ generating S^{1}-action preserving F
- $X^{\prime}=\tilde{X}+a Y$ on P preserving θ and $Y: \tilde{X} \in \mathcal{H}=\operatorname{ker} \theta$, $\left(\mathrm{pr}_{M}\right)_{*} \tilde{X}=X$, and $\left.d a=-X\right\lrcorner F$
- $W=P / X^{\prime}$, has action induced by Y

Twist data

Twist data

- M manifold
- $X \in \mathfrak{X}(M)$, circle action
- $F \in \Omega_{\mathbb{Z}}^{2}(M)^{X}$
- $a \in C^{\infty}(M)$ with $\left.d a=-X\right\lrcorner F$

horizontal distribution $\mathcal{H}=\operatorname{ker} \theta \subset T P$

DEFINITION

α tensor on M is \mathcal{H}-related to α_{W} on W if

$$
\operatorname{pr}_{M}^{*} \alpha=\operatorname{pr}_{W}^{*} \alpha_{W} \quad \text { on } \mathcal{H}
$$

Write $\alpha \sim_{\mathcal{H}} \alpha_{W}$

Twist computations

$\alpha \sim_{\mathcal{H}} \alpha_{W}$ if $\operatorname{pr}_{M}^{*} \alpha=\operatorname{pr}_{W}^{*} \alpha_{W}$ on $\mathcal{H}=\operatorname{ker} \theta$

- $\alpha \in \Omega^{p}(M)$:

$$
\left.d \alpha_{W} \sim_{\mathcal{H}} d_{W} \alpha:=d \alpha-\frac{1}{a} F \wedge(X\lrcorner \alpha\right)
$$

- I complex structure on M : I_{W} integrable if and only if $F \in \Lambda_{I}^{1,1}$

Example

$M=M(n):=\mathbb{C P}{ }^{n} \times T^{2}$ Kähler, X on $T^{2}, F=\omega_{\mathrm{FS}}$:
$W=S^{2 n+1} \times S^{1}$ non-Kähler.
How can we get Kähler, hyperKähler,... ?

HyperKÄHler geometry

$M^{4 n}$ hyperKähler: g (pseudo-)Riemannian metric, $I, J, K: T M \rightarrow T M$ bundle endomorphisms with

- $I^{2}=-1=J^{2}=K^{2}, I J=K=-J I$
- $g(I X, I Y)=g(X, Y)$ etc. and
- $\omega_{I}(X, Y)=g(I X, Y)$ etc. satisfy

$$
d \omega_{I}=0=d \omega_{J}=d \omega_{K}
$$

Then

- g is Ricci-flat,
- $\operatorname{Hol}_{0}(g) \leqslant S p(n)$ and
- I, J, K are integrable.

HyperKÄhler quotients

Suppose X is a tri-holomorphic isometry of (M, g, I, J, K), $L_{X} g=0, L_{X} I=0=L_{X} J=L_{X} K$, generating a circle action.

A hyperKähler moment map for X is $\mu=\left(\mu_{I}, \mu_{J}, \mu_{K}\right): M \rightarrow \mathbb{R}^{3}$ such that

$$
\left.\left.\left.d \mu=(X\lrcorner \omega_{I}, X\right\lrcorner \omega_{J}, X\right\lrcorner \omega_{K}\right)
$$

X is then tri-Hamiltonian

Theorem (Hitchin, Karlhede, Lindström and Roček 1987)

If X acts freely on $\mu^{-1}(0)$, then

$$
M / / / X=\mu^{-1}(0) / X
$$

is a smooth hyperKähler manifold of dimension $\operatorname{dim} M-4$.

HyperKÄhler modifications

Definition (Dancer-S)

The hyperKähler modification of M is

$$
M_{\mathrm{mod}}=(M \times \mathbb{H}) / / /\left(X^{\prime}=X-\frac{\partial}{\partial \theta}\right)
$$

where $\frac{\partial}{\partial \theta}$ generates $q \mapsto e^{i \theta} q$ on $\mathbb{H}=\mathbb{R}^{4}$.

- $\operatorname{dim} M_{\text {mod }}=\operatorname{dim} M$
- M complete, then $M_{\text {mod }}$ complete
- $\pi_{1}(M)=0$, then $b_{2}\left(M_{\text {mod }}\right)=b_{2}(M)+1$

Example

$M=\mathbb{H}, X=\frac{\partial}{\partial \theta}, \mu=\mu_{\mathbb{H}}+c, c \neq 0: \quad M_{\bmod }=T^{*} \mathrm{CP}(1)$
Which hyperKähler metrics are modifications?

A double fibration

For $\Phi=\mu-\mu_{\mathbb{H}}, X^{\prime}=X-\frac{\partial}{\partial \theta}$:

$$
P=\Phi^{-1}(0) \xrightarrow{\iota} M \times \mathbb{H}
$$

- $\operatorname{pr}\left(X^{\prime}\right)$ is a Riemannian submersion for $\iota^{*}\left(g+g_{\mathbb{H}}\right)$
- pr_{1} is not a Riemannian submersion, it induces the metric g^{N} on M :

$$
\begin{aligned}
& g^{N}=g+\frac{1}{2\|\mu\|} g_{\alpha}, \quad g_{\alpha}=\alpha_{0}^{2}+\alpha_{I}^{2}+\alpha_{J}^{2}+\alpha_{K}^{2} \\
& \alpha_{0}=X^{b}=g(X, \cdot), \alpha_{I}=I \alpha_{0}=-\alpha_{0}(I \cdot) \text { etc. }
\end{aligned}
$$

Elementary deformations

g hyperKähler, X an isometry, $\alpha_{0}=X^{b}, g_{\alpha}=\alpha_{0}^{2}+\alpha_{I}^{2}+\alpha_{J}^{2}+\alpha_{K}^{2}$

Definition

An elementary deformation g^{N} of g with respect to X is

$$
g^{N}=f g+h g_{\alpha}
$$

for some $f, h \in C^{\infty}(M)$
There are only two cases for X
(1) tri-holomorphic: $L_{X} I=0=L_{X} J=L_{X} K$
(2) rotating: $L_{X} I=0, L_{X} J=K$

Tri-holomorphic actions

g hyperKähler, X tri-holomorphic, $\operatorname{dim} M>4$
Locally X is tri-Hamiltonian with moment map $\mu=\left(\mu_{I}, \mu_{J}, \mu_{K}\right)$

Theorem (S)

An elementary deformation $g^{N}=f g+h g_{\alpha}$ twists via (X, F, a) to a hyperKähler metric g_{W} if and only if

- f constant, so take $f \equiv 1$,
- $h=h\left(\mu_{I}, \mu_{J}, \mu_{K}\right)$ is harmonic
- $F=d\left(h \alpha_{0}\right)+*_{3} d h$
- $a=1+h\|X\|^{2} \neq 0$

Proof method
(1) $\omega_{I}^{N} \sim_{\mathcal{H}} \omega_{I}^{N}=$ $f \omega_{I}+h \omega_{I}^{\alpha}$
(2) impose $d \omega_{I}^{W}=0$, i.e. $d_{W} \omega_{I}^{N}=0$
(3) impose $d a=-X\lrcorner F$
(4) impose $d F=0$
g hyperKähler, X tri-Hamiltonian, $g^{N}=g+h g_{\alpha}, h$ harmonic

Example

HyperKähler modification is $h=1 /(2\|\mu\|)$

Example

Taub-NUT deformation $W=\left(M \times\left(S^{1} \times \mathbb{R}^{3}\right)\right) / / / S^{1}$, diffeomorphic to M, is $h \equiv 1$

Example

$h>0: Z^{4}, g_{Z}(h)=\frac{1}{h}(d t+\omega)^{2}+h\left(d x^{2}+d y^{2}+d z^{2}\right), d \omega=*_{3} d h$ is a general hyperKähler 4-manifold with free tri-Hamiltonian action and $W=(M \times Z) / / / S^{1}$

Inversion

Generally: Twist of M by data (X, F, a) to W is inverted by twist data on $W \mathcal{H}$-related to $\left(\frac{1}{a} X,-\frac{1}{a} F, \frac{1}{a}\right)$.

Proposition (S)

HyperKähler twists above of the elementary deformation $g^{N}=g+h g_{\alpha}$ of g corresponding to h is inverted by the elementary deformation of g_{W} corresponding to $-h$.

- Modification inverted by $h=-1 /(2\|\mu\|)$. To get positive definite, need $\|X\|^{2}<2\|\mu\|$. So flat \mathbb{R}^{4} is not a modification.
- Taub-NUT deformation if and only if $\|X\|$ is bounded.
- $h>0$: inversion corresponds to hyperKähler quotient of
$\left(M \times Z^{4}, g \times-g_{Z}(h)\right)$. quaternionic Lorentzian

Strong HKT

strong HKT: (g, I, J, K) with

- $I d \omega_{I}=J d \omega_{J}=K d \omega_{K}=:-c$ and
- $d c=0$

Proposition

g hyperKähler, X tri-Hamiltonian, rank $d \alpha_{0} \geqslant 16$. An elementary deformation $g^{N}=f g+h g_{\alpha}$ twists via (X, F, a) to a strong HKT metric g_{W} if and only if

- f constant, so take $f \equiv 1$,
- $h=h\left(\mu_{I}, \mu_{J}, \mu_{K}\right)$ is harmonic
- $F=d\left(h \alpha_{0}\right)$
- $a=1+h\|X\|^{2} \neq 0$

Cf. hyperKähler twist $F=d\left(h \alpha_{0}\right)+*_{3} d h$.

Rotating actions

g hyperKähler, $\operatorname{dim} M>4, L_{X} I=0, L_{X} J=K$
Locally there is a Kähler moment map $\mu: M \rightarrow \mathbb{R}$ for $\left(\omega_{I}, X\right)$.

Theorem (MaciÁ-S)

For X non-null, an elementary deformation $g^{N}=f g+h g_{\alpha}$ twists to quaternionic Kähler if and only if

- $f=1 /(\mu-c)$
- $h=-1 /(\mu-c)^{2}$
- $F=d \alpha_{0}+\omega_{I}$
- $a=\|X\|^{2}-\mu+c$

This is the $\mathrm{hK} / \mathrm{qK}$ correspondence Haydys 2008; Alexandrov, Persson and Pioline 2011; Hitchin 2013; Alekseevsky, Cortés, Dyckmanns and Mohaupt 2013. In the c-map context, g has signature $(4 n, 4)$, but g^{N} is positive definite.

Show quaternionic Kähler by $d \Omega=0$

$$
\Omega=\omega_{I}^{2}+\omega_{J}^{2}+\omega_{K}^{2}
$$

provided $\operatorname{dim} M \geqslant 12$.
For $\operatorname{dim} M=8$, show

$$
d\left(\begin{array}{c}
\omega_{I} \\
\omega_{J} \\
\omega_{K}
\end{array}\right)=A \wedge\left(\begin{array}{c}
\omega_{I} \\
\omega_{J} \\
\omega_{K}
\end{array}\right)
$$

for some $A \in \Omega^{1} \otimes \mathfrak{s o}(3)$.

References I

嗇 Alekseevsky, D. V., V. Cortés, M. Dyckmanns and T. Mohaupt (2013), "Quaternionic Kähler metrics associated with special Kähler manifolds", arXiv: 1305.3549 [math.DG].
E Alexandrov, S., D. Persson and B. Pioline (2011), "Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence", J. High Energy Physics 2011:12, pp. 027, i, 64.
(1. Dancer, A. S. and A. F. Swann (2006), "Modifying hyperkähler manifolds with circle symmetry", Asian J. Math. 10:4, pp. 815-826.
Haydys, A. (2008), "HyperKähler and quaternionic Kähler manifolds with S^{1}-symmetries", J. Geom. Phys. 58:3, pp. 293-306.

References II

囯 Hitchin，N．J．（2013），＂On the hyperkähler／quaternion Kähler correspondence＂，Commun．Math．Phys．324：1，pp．77－106．目 Hitchin，N．J．，A．Karlhede，U．Lindström and M．Roček（1987）， ＂HyperKähler metrics and supersymmetry＂，Comm．Math． Phys．108，pp．535－589．
（iv Maciá，Ó．and A．F．Swann（2014），＂Twist geometry of the c－map＂，in preparation．
國 Swann，A．F．（2010），＂Twisting Hermitian and hypercomplex geometries＂，Duke Math．J．155：2，pp．403－431．
－（2014），＂Twists versus modifications＂，in preparation．

