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Section 1

SKT geometry
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SKT geometry

(𝑔, 𝐽,𝜎 = 𝑔(𝐽 · , · )) a Hermitian structure (𝐽 integrable)
Strong Kähler with torsion (SKT):

𝑑𝐽𝑑𝜎 = 0

Equivalently 𝜕𝜕𝜎 = 0.
Originates from supersymmetric 𝜎-models (Gates et al. 1984) /
superstrings with torsion (Strominger 1986).
Torsion: the Bismut connection ∇𝐵 = ∇𝐿𝐶 + 1

2𝑇
𝐵 has torsion 𝑇 𝐵

given by

𝑔(𝑇 𝐵 (𝑋,𝑌),𝑍) = 𝑑𝜎(𝐽𝑋, 𝐽𝑌, 𝐽𝑍) C 𝑐𝐵 (𝑋,𝑌,𝑍)

a three-form. Gauduchon (1997): ∇𝐵 is the unique Hermitian
connection with torsion a three-form.
Strong: the torsion three-form 𝑐𝐵 is closed.
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First examples

SKT: (𝑔, 𝐽,𝜎) Hermitian with 𝑑𝐽𝑑𝜎 = 0

Kähler manifolds: are all SKT.
Real dimension 4: SKT same as the Lee form 𝐽𝑑∗𝜎 is co-closed.
For compact𝑀, Gauduchon (1984) gives a unique SKT metric in
each conformal class. E.g.𝑀 = 𝑆1 × 𝑆3

Compact Lie groups of even dimension: 𝐽 any left-invariant
complex structure, 𝑔 any compatible bi-invariant metric,
∇𝐿𝐶
𝑋 𝑌 = 1

2 [𝑋,𝑌], 𝑐𝐵 = −𝑔( [𝑋,𝑌],𝑍) is SKT (Spindel et al. 1988).
E.g.𝑀 = SU(3) or SU(2) × SU(2)

Andrew Swann Shears, solvable algebras and SKT geometry



SKT geometry Twists and shears Solvable algebras Definition Examples

Some previous homogeneous classifications

Notation: (0, 12) indicates the a�ne algebra given dually by
𝑑𝑒1 = 0, 𝑑𝑒2 = 𝑒1 ∧ 𝑒2 C 𝑒12, etc.

Non-Kähler examples
Nilpotent Lie groups
Dimension 4: (0, 0, 0, 12)
Dimension 6: Fino et al. (2004) (out of 34 algebras)

(0, 0, 0, 0, 0, 12), (0, 0, 0, 0, 12, 34),
(0, 0, 0, 0, 12, 13 + 42), (0, 0, 0, 0, 12 + 34, 13 + 42).

Dimension 8: Enrietti et al. (2012)

Solvable Lie groups
Dimension 4: Madsen and Swann (2011)
Almost Abelian algebras: characterised by Arroyo and Lafuente
(2019)
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Section 2

Twists and shears
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The twist construction

𝑀

𝑃
𝜋𝑀

𝑊

𝜋𝑊

𝑀 a manifold with an action of a connected Abelian group 𝐴𝑀 ,
e.g. 𝐴𝑀 = 𝑇 𝑘, in�nitesimal action 𝜉 : 𝔞𝑀 → 𝔛(𝑀).
𝑃 a principal 𝐴𝑃 = 𝑇 𝑘-bundle over𝑀, in�nitesimal action
𝜌 : 𝔞𝑃 → 𝔛(𝑃). Connection one-form 𝜃 ∈ Ω1(𝑃, 𝔞𝑃), curvature
𝜋∗
𝑀𝜔 = 𝑑𝜃, and horizontal distributionH = ker 𝜃. Horizontal lift 𝜉

of 𝜉.
The action 𝜉 = 𝜉 + (𝜋∗𝑎)𝜌, 𝑎 ∈ Ω0(𝑀, 𝔞𝑃 ⊗ 𝔞∗𝑀), commutes with
𝐴𝑃 if and only if 𝜉 y 𝜔 = −𝑑𝑎 and 𝜉∗𝜔 = 0.
We then put𝑊 = 𝑃/〈𝜉〉 to be the twist of𝑀.
𝐴𝑃 then induces an action on𝑊, and𝑀 is also a twist of𝑊.
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H -related forms

𝑀

𝑃
𝜋𝑀

𝑊

𝜋𝑊

Invariant 𝑝-forms 𝛼𝑀 on𝑀 and 𝛼𝑊 on𝑊 areH -related, written
𝛼𝑀 ∼H 𝛼𝑊 , if

𝜋∗
𝑀𝛼𝑀

��
Λ𝑝H = 𝜋∗

𝑊𝛼𝑊
��
Λ𝑝H .

Exterior derivatives are then related by

𝑑𝛼𝑊 ∼H 𝑑𝛼𝑀 − 𝑎−1𝜔 ∧ (𝜉 y 𝛼𝑀)

𝜔 curvature of 𝑃 → 𝑀, 𝜉 the in�nitesimal action on𝑀,
𝑎 ∈ Ω0(𝑀, 𝔞𝑃 ⊗ 𝔞∗𝑀), 𝑑𝑎 = −𝜉 y 𝜔.
Similarly, for other tensors.
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SKT twists

If𝑀 is SKT, can now compute when the twist is SKT.
Typical examples obtained from𝑀 = 𝑁 × 𝑇 2𝑘, 𝑁 SKT or Kähler,
𝜔 =

∑2𝑘
𝑖=1 𝜔𝑖 ⊗ 𝑒𝑖, 𝜔𝑖 ∈ Ω1,1(𝑁) (instanton case) integral with∑2𝑘

𝑖,𝑗=1 𝛾𝑖𝑗𝜔𝑖 ∧ 𝜔𝑗 = 0 for (𝛾𝑖𝑗) ∈ 𝑀2𝑘 (ℝ) invertible. There is also a
non-instanton case, with more involved conditions on
the 𝜔𝑖 ∈ Ω2(𝑁).

Get non-trivial SKT structures on various torus bundles over
Kähler manifolds, some examples where the manifold admits no
Kähler structure: includes compact Lie groups as torus bundles
over �ag manifolds, Grantcharov et al. (2008) examples
(𝑘 − 1) (𝑆2 × 𝑆4)#𝑘(𝑆3 × 𝑆3) for all 𝑘 > 1 and each nilmanifold
example in dimension 6.
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Two-step nilpotent twists

𝐺 = 𝑇 𝑛, 𝔤 = ℝ𝑛

𝔞 a 𝑘-dimensional subalgebra, 𝜉 : 𝔞 → 𝔤 inclusion.
Take 𝜔 ∈ Λ2𝔤∗ ⊗ 𝔞 closed with 𝜉 y 𝜔 = 0.
Then for 𝑎 = id𝔞, the twist is two-step nilpotent with non-trivial
derivatives given by −𝜔.

Example 𝔤 = ℝ3, 𝔞 = Span{𝐸3}, 𝜔 = −𝑒1 ∧ 𝑒2 ⊗ 𝐸3 has twist
(0, 0, 𝑒12), the Heisenberg group.

Example 𝔤 = ℝ6, 𝔞 = Span{𝐸5,𝐸6},
𝜔 = −𝑒1 ∧ 𝑒2 ⊗ 𝐸5 − (𝑒1 ∧ 𝑒3 + 𝑒4 ∧ 𝑒2) ⊗ 𝐸6 has twist
(0, 0, 0, 0, 12, 13 + 42), an SKT algebra.
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Shear data

A foliated version of the twist construction.
𝜋𝐸 : 𝐸 → 𝑀 a bundle with �at connection ∇ and a bundle
morphism 𝜉 : 𝐸 → 𝑇𝑀 that is torsion free

𝜉 (∇𝜉𝑒1𝑒2 − ∇𝜉𝑒2𝑒1) = [𝜉𝑒1, 𝜉𝑒2].

𝜋𝐹 : 𝐹 → 𝑀 a second �at bundle connection ∇, a bundle
isomorphism 𝑎 : 𝐸 → 𝐹 and a two-form 𝜔 ∈ Ω2(𝑀,𝐹) with

𝑑∇𝜔 = 0, 𝜉 y 𝜔 = −𝑑∇𝑎 and 𝜉∗𝜔 = 0.

A shear total space for 𝜔 is a foliated manifold 𝑃, with leaf space
𝜋 : 𝑃 → 𝑀, such thatV = ker𝑑𝜋 is isomorphic to 𝜋∗𝐹, and there
a “connection” 𝜃 ∈ Ω1(𝑃,𝜋∗𝐹) realisingV � 𝜋∗𝐹, and with
𝑑∇𝜃 = 𝜋∗𝜔. AgainH = ker 𝜃 is a horizontal subbundle.
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The shear construction

Shear data ensures that the bundle morphism 𝜉 : 𝜋∗𝐸 → 𝑇 𝑃 given
by

𝜉 = 𝜉 + 𝜌 ◦ 𝜋∗𝑎 ,

where 𝜉 : 𝜋∗𝐸 → H ⊂ 𝑇 𝑃 is the horizontal lift, is such that 𝜉 (𝜋∗𝐸)
is an integrable distribution on 𝑃.
The shear of (𝑀, 𝜉, 𝑎 ,𝜔) is then

𝑆 = 𝑃/𝜉 (𝜋∗𝐸).

One can work withH -related forms satisfying the invariance
condition

L∇
𝜉 𝛼 B 𝜉 y 𝑑𝛼 + 𝑑∇ (𝜉 y 𝛼) = 0.

The previous formula for the exterior derivative then holds.
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Section 3

Solvable algebras
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Shears of Abelian algebras

𝔤 any Lie algebra, 𝔞𝑃 Abelian.
Any extension

𝔞𝑃 ↩→ 𝔭 → 𝔤

has

[𝑋,𝑌]𝔭 = [𝑋,𝑌]𝔤 − 𝜔(𝑋,𝑌) and [𝑋,𝑍]𝔭 = 𝜂(𝑋)𝑍

for 𝑋,𝑌 ∈ 𝔤, 𝑍 ∈ 𝔞𝑃 . Thus it is speci�ed by

𝜔 ∈ Λ2𝔤∗ ⊗ 𝔞𝑃 and 𝜂 ∈ 𝔤∗ ⊗ 𝔤𝔩(𝔞𝑃).

The Jacobi identity is
𝑑𝜔 = −𝜂 ∧ 𝜔.

Regarding 𝜂 as a connection one-form for ∇, this equation is
𝑑∇𝜔 = 0.
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Two-step solvable algebras

𝔤 Abelian. Can take 𝜉 = inc : 𝔞 = 𝔞𝐺 → 𝔤 inclusion, 𝔞𝑃 = 𝔞 and
𝑎 = id𝔞 : 𝔞𝐺 → 𝔞𝑃 .
Then 𝜔 determines the rest of the shear data. Writing 𝔤 = 𝔞 ⊕ 𝑈,

𝜔 ∈ Λ2𝔤∗ ⊗ 𝔞

𝜔−1 + 𝜔0 + 𝜔1 ∈
(
Λ2𝔞∗ ⊕ (𝑈∗ ∧ 𝔞∗) ⊕ Λ2𝑈∗) ⊗ 𝔞.

Proposition
This is shear data if and only if 𝜔−1 = 0 and

A(𝜔(𝜔( · , · ), · )) = 0

whereA is skew-symmetrisation.

(Corresponds to 𝜂 = −𝜔0 and connection form for 𝐸 being 0).
The shear algebra 𝔥, which is 𝔭 quotiented by the diagonal copy of
𝔞, has Lie brackets given by −𝜔. It is two-step solvable.
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Data for two-step solvable SKT algebras

𝔤 Abelian, even-dimensional, with �at Kähler structure (𝑔, 𝐽,𝜎).
If (𝔞,𝜔) is two-step shear data on 𝔤, then the shear 𝔥 is SKT if and
only if

𝜔(𝐽 · , 𝐽 · ) = 𝜔( · , · ) + 𝐽 (𝜔(𝐽 · , · ) + 𝜔( · , 𝐽 · )) and
A

(
𝑔(𝜔(𝐽 · , 𝐽 · ),𝜔( · , · )) + 2𝑔(𝜔(𝐽𝜔( · , · ), 𝐽 · ), · )

)
= 0

Put

𝔞𝐽 = 𝔞 ∩ 𝐽𝔞, 𝔞𝑟 = 𝔞⊥𝐽 ∩ 𝔞,

𝑈𝑟 = 𝐽𝔞𝑟, 𝑈𝐽 = (𝔞 ⊕ 𝐽𝔞𝑟)⊥, 𝑈 = 𝑈𝑟 ⊕ 𝑈𝐽

and split 𝜔 = 𝜔0 + 𝜔1 ∈ (𝑈∗ ∧ 𝔞∗ ⊕ Λ2𝑈∗) ⊗ 𝔞 accordingly.
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Simultaneous diagonalisation

For 𝑋 ∈ 𝔞𝑟, put 𝐴𝑋 = −𝜔0(𝐽𝑋, · ) ∈ End(𝔞) and 𝐾𝑋 the part of 𝐴𝑋

in End(𝔞𝐽).

Proposition
There is a unitary basis 𝑌𝑖 of 𝔞𝐽 and 𝛼𝑗 ∈ 𝔞∗𝑟 ⊗ ℂ such that

𝐾𝑋 (𝑌𝑖) = 𝛼𝑖 (𝑋)𝑌𝑖, for all 𝑋 ∈ 𝔞𝑟.
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Classification results

Write 𝔤′ = [𝔤, 𝔤] for the derived algebra.

Theorem
There are explicit classi�cations for two-step solvable SKT Lie
algebras 𝔤 in the following cases:
𝔤 almost Abelian, i.e. 𝔤 has a codimension one Abelian ideal,
codim 𝔤′ = 2 with 𝐽𝔤′ ≠ 𝔤′,
𝔤′ totally real, i.e. 𝐽𝔤′ ∩ 𝔤′ = {0}, with codim𝔤′ [𝔤′, 𝐽𝔤′] 6 2,
and
dim 𝔤′ 6 2.
Specialising and extending one also obtains a classi�cation of all
two-step solvable SKT Lie algebras in dimension 6, with the
exception of the case when dim 𝔤′ = 4 with 𝐽𝔤′ = 𝔤′.
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