Twists and special holonomy

Andrew Swann
Department of Mathematics, University of Aarhus

July 2014 / Bilbao

Including joint work with Óscar Maciá (Valencia) and Marco Freibert (Aarhus)

Outline

(1) Twist construction
(2) HyperKähler to hyperKähler Model: hyperKähler modification
Double fibration
Elementary deformations
Tri-holomorphic actions
(3) HyperKähler to quaternionic Kähler
(4) HyperKähler to strong HKT
(5) G_{2} то G_{2}

Twist construction

Twist data

- M manifold
- $X \in \mathfrak{X}(M)$, circle action
- $F \in \Omega_{\mathbb{Z}}^{2}(M)^{X}$
- $a \in C^{\infty}(M)$ with $\left.d a=-X\right\lrcorner F$

horizontal distribution $\mathcal{H}=\operatorname{ker} \theta \subset T P$
α tensor on M is \mathcal{H}-related to α_{W} on W if

$$
\operatorname{pr}_{M}^{*} \alpha=\operatorname{pr}_{W}^{*} \alpha_{W} \quad \text { on } \mathcal{H}
$$

Write $\alpha \sim_{\mathcal{H}} \alpha_{W}$

Twist computations

$\alpha \sim_{\mathcal{H}} \alpha_{W}$ if $\operatorname{pr}_{M}^{*} \alpha=\operatorname{pr}_{W}^{*} \alpha_{W}$ on $\mathcal{H}=\operatorname{ker} \theta$

- $\left.\alpha \in \Omega^{p}(M): d \alpha_{W} \sim_{\mathcal{H}} d \alpha-\frac{1}{a} F \wedge(X\lrcorner \alpha\right)$

- I complex structure on M :
I_{W} integrable if and only if $F \in \Lambda_{I}^{1,1}$

Example

$M=M(n):=\mathbb{C} P^{n} \times T^{2}$
Kähler, X on $T^{2}, F=\omega_{\mathrm{FS}}$:
$W=S^{2 n+1} \times S^{1}$ Hermitian non-Kähler.

Example

$M=T^{n}, F$ left-invariant:
W is a nilmanifold corresponding to

$$
\mathfrak{g}^{*}=\left(0^{n-1}, F\right) .
$$

How can we get Kähler, hyperKähler,... ?

Model: HyperKähler modification

X is a tri-Hamiltonian isometry of hyperKähler (M, g, I, J, K)

Definition (Dancer-Swann)

The hyperKähler modification of M is

$$
M_{\mathrm{mod}}=(M \times \mathbb{H}) / / /\left(X^{\prime}=X-\frac{\partial}{\partial \theta}\right)
$$

where $\frac{\partial}{\partial \theta}$ generates $q \mapsto e^{i \theta} q$ on $\mathbb{H}=\mathbb{R}^{4}$.

- $\operatorname{dim} M_{\text {mod }}=\operatorname{dim} M$
- M complete, then $M_{\text {mod }}$ complete
- $\pi_{1}(M)=0$, then
$b_{2}\left(M_{\text {mod }}\right)=b_{2}(M)+1$

Example

$$
\begin{aligned}
& M=\mathbb{H}, X=\frac{\partial}{\partial \theta}, \\
& \mu=\mu_{\mathbb{H}}+c, c \neq 0: \\
& M_{\bmod }=T^{*} \mathbb{C P}(1)
\end{aligned}
$$

A double fibration

For $\Phi=\mu-\mu_{\mathrm{H}}, X^{\prime}=X-\frac{\partial}{\partial \theta}$:

$$
P=\Phi^{-1}(0) \xrightarrow{\iota} M \times \mathbb{H}
$$

- $\operatorname{pr}\left(X^{\prime}\right)$ is a Riemannian submersion for $\iota^{*}\left(g+g_{\mathbb{H}}\right)$
- pr_{1} is not a Riemannian submersion, it induces the metric g^{N} on M :

$$
\begin{aligned}
& g^{N}=g+\frac{1}{2\|\mu\|} g_{\alpha}, \quad g_{\alpha}=\alpha_{0}^{2}+\alpha_{I}^{2}+\alpha_{J}^{2}+\alpha_{K}^{2} \\
& \alpha_{0}=X^{b}=g(X, \cdot), \alpha_{I}=I \alpha_{0}=-\alpha_{0}(I \cdot) \text { etc. }
\end{aligned}
$$

Elementary deformations

g hyperKähler, X an isometry, $\alpha_{0}=X^{b}, g_{\alpha}=\alpha_{0}^{2}+\alpha_{I}^{2}+\alpha_{J}^{2}+\alpha_{K}^{2}$

Definition

An elementary deformation g^{N} of g with respect to X is

$$
g^{N}=f g+h g_{\alpha}
$$

for some $f, h \in C^{\infty}(M)$
There are only two cases for X
(1) tri-holomorphic: $L_{X} I=0=L_{X} J=L_{X} K$
(2) rotating: $L_{X} I=0, L_{X} J=K$

Tri-holomorphic actions

(M, g) hyperKähler, $\operatorname{dim} M>4, X$ tri-Hamiltonian with moment map $\mu=\left(\mu_{I}, \mu_{J}, \mu_{K}\right)$

Proof method

Theorem (SWann)

An elementary deformation $g^{N}=f g+h g_{\alpha}$ twists via (X, F, a) to a hyperKähler metric g_{W} if and only if

- f constant, so take $f \equiv 1$,
- $h=h\left(\mu_{I}, \mu_{J}, \mu_{K}\right)$ is harmonic in $U \subset \mathbb{R}^{3}$,
- $F=d\left(h \alpha_{0}\right)+*_{3} d h$,
- $a=1+h\|X\|^{2} \neq 0$.
(1) $\omega_{I}^{W} \sim_{\mathcal{H}} \omega_{I}^{N}=$ $f \omega_{I}+h \omega_{I}^{\alpha}$
(2) impose $d \omega_{I}^{W}=0$,
i.e. $d \omega_{I}^{N}-\frac{1}{a} F \wedge$ $\left.(X\lrcorner \omega_{I}^{N}\right)=0$
(3) impose $d a=-X\lrcorner F$
(4) impose $d F=0$
g hyperKähler, X tri-Hamiltonian, $g^{N}=g+h g_{\alpha}, h$ harmonic on $U \subset \mathbb{R}^{3}$

Example

HyperKähler modification is $h=1 /(2\|\mu\|)$

Example

Taub-NUT deformation $W=\left(M \times\left(S^{1} \times \mathbb{R}^{3}\right)\right) / / / S^{1}$, diffeomorphic to M, is $h \equiv 1$

Example

$h>0: Z^{4}, g_{Z}(h)=\frac{1}{h}(d t+\omega)^{2}+h\left(d x^{2}+d y^{2}+d z^{2}\right), d \omega=*_{3} d h$ is a general hyperKähler 4-manifold with free tri-Hamiltonian action and $W=(M \times Z) / / / S^{1}$
If M is complete and g_{Z} extends to a complete hyperKähler metric, then get a unique hyperKähler completion of the twist. E.g. g_{Z} multi-Eguchi-Hanson, multi-Taub-NUT og A_{∞}.

Inversion

Generally: Twist of M by data (X, F, a) to W is inverted by twist data on $W \mathcal{H}$-related to $\left(\frac{1}{a} X,-\frac{1}{a} F, \frac{1}{a}\right)$.

Proposition (Swann)

The hyperKähler twist above of the elementary deformation $g^{N}=g+h g_{\alpha}$ of g corresponding to h is inverted by the elementary deformation of g_{W} corresponding to $-h$.

- Modification inverted by $h=-1 /(2\|\mu\|)$. To get positive definite, need $\|X\|^{2}<2\|\mu\|$. So flat \mathbb{R}^{4} is not a modification.
- Taub-NUT deformation if and only if $\|X\|$ is bounded.
- $h>0$: inversion corresponds to hyperKähler quotient of
$\left(M \times Z^{4}, g \times-g_{Z}(h)\right)$. quaternionic Lorentzian

HyperKÄhler to quaterninoic Kähler

g hyperKähler, $\operatorname{dim} M>4, X$ rotating: $L_{X} I=0, L_{X} J=K$ and Hamiltonian for ω_{I} with Kähler moment map $\mu: M \rightarrow \mathbb{R}$.

Theorem (MaciÁ-Swann)

For X non-null, an elementary deformation $g^{N}=f g+h g_{\alpha}$ twists to quaternionic Kähler if and only if

- $f=1 /(\mu-c)$
- $h=-1 /(\mu-c)^{2}$
- $F=d \alpha_{0}+\omega_{I}$
- $a=\|X\|^{2}-\mu+c$

This is a uniqueness result for the $\mathrm{hK} / \mathrm{qK}$ correspondence of Haydys 2008; Alexandrov, Persson and Pioline 2011; Hitchin 2013; Alekseevsky, Cortés, Dyckmanns and Mohaupt 2013.

C-MAP

In the c-map context, g has signature $(4 n, 4)$, but g^{N} is positive definite.

$T^{*} \mathrm{C}$ hyperKähler
Q quaternionic Kähler twist bundle conic special Kähler projective special Kähler

Example

$S=\mathbb{R} H(1)=\operatorname{Aff}(\mathbb{R})$ has two left-invariant projective special Kähler structures giving Q as $\mathrm{Gr}_{2}\left(\mathbb{C}^{2,2}\right)$ or $G_{2}^{*} / S O(4)$, as left-invariant quaternionic Kähler structures on solvable groups.

Detect that twist is quaternionic Kähler by $d \Omega=0$

$$
\Omega=\omega_{I}^{2}+\omega_{J}^{2}+\omega_{K}^{2}
$$

provided $\operatorname{dim} M \geqslant 12$.
For $\operatorname{dim} M=8$, show

$$
d\left(\begin{array}{c}
\omega_{I} \\
\omega_{J} \\
\omega_{K}
\end{array}\right)=A \wedge\left(\begin{array}{c}
\omega_{I} \\
\omega_{J} \\
\omega_{K}
\end{array}\right)
$$

for some $A \in \Omega^{1} \otimes \mathfrak{s o}(3)$.

Strong HKT

strong HKT: (g, I, J, K) with $I d \omega_{I}=J d \omega_{J}=K d \omega_{K}=:-c$ and $d c=0$

Proposition (Swann)

g hyperKähler, X tri-Hamiltonian, rank $d \alpha_{0} \geqslant 16$. An elementary deformation $g^{N}=f g+h g_{\alpha}$ twists via (X, F, a) to a strong HKT metric g_{W} if and only if

- f constant, so take $f \equiv 1$,
- $h=h\left(\mu_{I}, \mu_{J}, \mu_{K}\right)$ is harmonic
- $F=d \alpha_{0}$
- $a=\|X\|^{2} \neq 0$

Cf. hyperKähler twist $F=d\left(h \alpha_{0}\right)+*_{3} d h$.
Non-trivial examples from $M=T^{*} G^{C}$ for each G compact Lie.

G_{2} то G_{2}

(M, g) holonomy G_{2} with three-form φ.
For a symmetry X, we decompose

$$
\begin{gathered}
g=g_{\perp}+\frac{1}{\|X\|^{2}} \alpha_{0}^{2} \\
\varphi=\omega \wedge \frac{1}{\|X\|^{2}} \alpha_{0}+\rho
\end{gathered}
$$

with $\omega=X\lrcorner \varphi, X\lrcorner \rho=0$. This has $d \omega=0$.
Elementary deformation

$$
\begin{gathered}
g^{N}=f^{2} g+\frac{\left(h^{2}-f^{2}\right)}{\|X\|^{2}} \alpha_{0}^{2} \\
\varphi^{N}=f^{2} h \omega \wedge \frac{1}{\|X\|^{2}} \alpha_{0}+f^{3} \rho
\end{gathered}
$$

$$
g^{N}=f^{2} g+\frac{\left(h^{2}-f^{2}\right)}{\|X\|^{2}} \alpha_{0}^{2}, \varphi^{N}=f^{2} h \omega \wedge \frac{1}{\|X\|^{2}} \alpha_{0}+f^{3} \rho
$$

Proposition (Freibert-Swann)

Let (M, g, φ) be a parallel G_{2}-structure with symmetry X. Then the elementary deformation $\left(g^{N}, \varphi^{N}\right)$ twists to a parallel G_{2}-structure if and only if

- f constant, so take $f \equiv 1$,
- $h>1$ is arbitrary
- $F=d\left((h-1) \alpha_{0}\right)$
- $a=h$

References I

圊 Alekseevsky, D. V., V. Cortés, M. Dyckmanns and T. Mohaupt (2013), "Quaternionic Kähler metrics associated with special Kähler manifolds", arXiv: 1305.3549 [math.DG].
E Alexandrov, S., D. Persson and B. Pioline (2011), "Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence", J. High Energy Physics 2011:12, pp. 027, i, 64.

Dancer, A. S. and A. F. Swann (2006), "Modifying hyperkähler manifolds with circle symmetry", Asian J. Math. 10:4, pp. 815-826.
國 Haydys, A. (2008), "HyperKähler and quaternionic Kähler manifolds with S^{1}-symmetries", J. Geom. Phys. 58:3, pp. 293-306.

References II

E Hitchin, N. J. (2013), "On the hyperkähler/quaternion Kähler correspondence", Commun. Math. Phys. 324:1, pp. 77-106.
(Maciá, Ó. and A. F. Swann (2014), "Twist geometry of the c-map", arXiv: 1404.0785 [math.DG].
目 Swann, A. F. (2010), "Twisting Hermitian and hypercomplex geometries", Duke Math. J. 155:2, pp. 403-431.

- (2014), "Twists versus modifications", in preparation.

