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The dual fibration in elementary terms

Anders Kock

We give an elementary construction of the dual fibration ofbaafion. It
does not use the non-elementary notion of (pseudo-) fumttoithe category of
categories. In fact, it is clear that the construction wesené makes sense for
internal categories and fibrations in any exact category.

The dual fibration of a fibratio®?™ — 2 over# is described in e.g. [Borceux]
11.8.3 via a pseudofunctdf : #°P — Cat (the category of categories), by com-
posingF with the (covarariant!) dualization funct@at — Cat; choosing such an
F is tantamount to choosing a cleavage for the fibration. Inptlesent section,
we give an alternative description of the dual fibration, ebhis elementary and
choice-free.

1 Fibrations

We recall here some classical notions.

Letrr: 2" — % be any functor. Foo : A— Bin 4, and for objectX,Y € 2~
with 71(X) = Aandr(Y) = B, let hom, (X,Y) be the set of arroms: X — Y in 2
with r7(h) = a. For any arrowé : C — A, and any objecZ € 2" with (Z) =C,
post-composition witln defines a map

h, - homg (Z,X) — homg 4(Z,Y).

(we compose from left to right). Recall thiais calledCartesianif this map is a
bijection, for all suché andZ.

If his Cartesian, the injectivity df, implies the cancellation property thiat
is “monic w.r. tom”, meaning that for parallel arrowls k' in 2~ with codomain
X, and withri(k) = m(k’), we have thak.h = k'.himpliesk = K.

For later use, we recall a basic fact:

Lemma 1.1 If k = K'.h is Cartesian, and h is Cartesian thehig Cartesian.
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The functorrr: 2~ — A is called dfibrationif for everya : A— Bin % and
anyY € 2" with (YY) = B, there exists a Cartesian arrow ogewith codomairy .
ThefibreoverA € 4 is the category whose objects are ¥he 2" with 11(X) = A,
and whose arrows are arrows.1 which by mmap to J; such arrows are called
vertical (overA).

All this is standard, dating back essentially to early Frenategory theory
(Grothendieck, Chevalley, Giraud, Bénabou,...). For a@nocccount, see 1]
11.8.1, [2] B.1.3, or [3]. Note that these notions are eletaen(they make sense
for category objects in any left exact category), and theydbdepend on the
non-elementary notions afeavage or Cat-valuedpseudofunctar

2 The “factorization system” for a fibration

In the diagrams below, we try to make display vertical arrearsically, and Carte-
sian arrows horizontally.

Recall from the literature that iff : 2~ — £ is a fibration, then every arrow
zin 2" may be written as a composite of a vertical arrow followed lmpdesian
arrow. And, crucially, this decomposition afs unique modulo aniquevertical
isomorphism. Or, equivalently, modulo an arrow which id@t$ame time vertical
and cartesian. (Recall that for vertical arrows, cartegagquivalent to isomor-
phism (= invertible).) This means that every arrawn 2" may be represented
by a pair(v,h) of arrows withv vertical andh cartesian, witlz = v.h. Thus the
codomain ofv is the domain oh. We call such a pair a “vh composition pair”, to
make the analogy with vh spans, to be considered below, nxpieie. Two such
pairs(v,h) and(V,h’) represent the same arrow iff there exists a vertical cantesi
(necessarily unique, and necessarily invertibg)ch that

vi=V andi.n’ = h. (1)

We say that(v,h) and (V,h’) are equivalentif this holds. The composition of
arrows in.Z" can be described in terms of representative vh compositins,p
as follows. Ifzj is represented by, h;j) for j = 1,2, thenz;.z is represented
by (vi.w,k.hp), wherek is cartesian overi(h;) andw is vertical, and the square



displayed commutes:

Vi

hy

k hy
Suchk andw exists (uniquely, up to unigue vertical cartesian arroveghstruct
first k as a cartesian lift oft(h;), then use the universal property of cartesian
arrows to construat.

The arrowsz; andz, may be inserted, completing the diagram with two com-
mutative triangles, sincg = v;.h;. But if we refrain from doing so, we have a
blueprint for a succinct and choice-free description offibeewise dualZ™ of
the fibration2™ — 4.

Note that a vh factorization of an arrow i#" is much reminiscent of the
factorization for arE-M factorization system, as in [Borceux] 1.5.5, say, (with the
class of vertical arrows playing the role Bf and the class of cartesian arrows
playing the role oM; however, note that not every isomorphisminis vertical.

3 The dual fibration Z°*

The construction presented in this Section is still elemgntut requires more
than just left exactness in the category where it is perfdimamely exactness;
this implies that good quotients exist for equivalencetietes, and that maps on
such a quotient can be defined by assigning values on repatiserelements for
the equivalence classes. — We present the constructioreiexact category of
sets, for simplicity.

Given a fibrationt: 2" — 2. We describe another categofd/* over %4, as
follows: The objects of2™* are the same as those 4f; the arrowsX — Y are
represented by vh spans, in the following sense:



Definition 3.1 Avh spann 2" from X to Y is a diagram iz of the form

h
Y

v (2)

X

with v vertical and h cartesian.

The set of arrows i2"™* from X to Y are equivalence classes of vh spans from
X to'Y, for the equivalence relatios given by (v,h) = (V,h) if there exists a
vertical isomorphisni (necessarily unique) i®” so that

iv.=V andi.h="H. (3)

We denote the equivalence class of the vh spah) by {(v,h)}. They are the
arrows of 2™*; the direction of a the arrof(v,h)} is determined by its cartesian
parth.

Composition has to be described in terms of representaiws;t is in fact
the standard composite of spans, but let us be explicig; I§ represented by
(vj,hj) for j = 1,2, thenz,.z is represented byw, k), wherek is cartesian over
ri(hy) andw is vertical, and the square displayed commutes:

k ho

T (4)

hy

Vi

Suchk andw exists (uniquely, up to unique vertical cartesian arroveghstruct
first k as a cartesian lift oft(h;), then use the universal property of cartesian
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arrows to construat. (The square displayed will then actually be a pull-back dia

gram, thus the composition described will be the standantposition of spans.)
Composition of vh spans does not give a definite vh span, butran equiv-

alence class of vh spans. So referring_fo (4), the compokité, h;)} with the

of {(vz,hy)} is defined by

{(Vl, hl)}.{(Vz, hz)} = {(W.Vl, k.hz)}.

There is a functort from 2°* to %, on objects, it agrees witlt: 2~ — %,
and t*({(v,h)}) = m(h). Note that ifv: X’ — X is vertical, the vh spaifv, 1)
represents a morphisk— X' in 27*.

Clearly, a vertical arrow inZ2™* has a unique representative span of the form
(v,1). So the fibres oft* : 2™ — % are canonically isomorphic to the duals of
the fibres ofit: 2" — %, i.e.(Z27)a = (Za)°P; so 2" is “fibrewise dual” to.2”
(butis notin general dual t&", since the functort* : 2™ — £ is still a covariant
functor). The arrows inZ™*, we callcomorphismsit is ususally harmless to use
the name “comorphism” also for a representing vh spelm).

There are two special classes of comorphisms: the first ctassists of those
comorphisms that can be represented by a(val) where 1 is the relevant iden-
tity arrow. They are precisely the vertical arrows f@r* — %. — The second
class consists of those comorphisms that can be repredangeplair(1, h) where
1 is the relevant identity arrow. We shall see that these @@ gely the cartesian
morphisms inZ™*.’

We first note that i{v, h) represents an arbitrary arrow it *, then

(v.h) e {(vD}{(L N} (5)
this is withessed by the diagram
1 h
1 1
1




since the upper left square is of the form considereflin (4).

Proposition 3.2 An arrow g is cartesian inZ"* iff it admits a vh representative
of the form(1, h).

Proof. In one direction, let1, h) represent a comorphisyh— Z overf3 € 4, and
let (v,k) represent a comorphis¥ — Z overa.3. We display these data as the
full arrows in the following display (inZ" and %):

a B
The dotted arrovk’ comes about by using the universal property of the cartesian
arrowh in 2". Sincek andh are Cartesian, then sok§ by the Lemma1]l. So
(v,K') is a comorphism over, and(v,k’).(1.h) = (v, k), and using the cancellation
property of Cartesian arrowsy, k') is easily seen to be the unique comorphism
overa.3 composing with(1, h) to give (v, k).

In the other direction, leg be a cartesian arrow if2™*. Let (w, k) be an arbi-
trary representative aj. Then by [(5),g= {(w,1)}.{(1,k)}. Sinceg is assumed
cartesian inZ2™*, and{(1,k)} is cartesian by what is already proved, it follows
from Lemmé& 1.1l thaf(w, 1)} is cartesian. Since it is also vertical, it follows that
itis an isomorphism iZ™*, hencew is an isomorphism ir®2”. Sincek is cartesian
in 2", wLkis cartesian as well, and

(w,k) = (1,w 1k),

sog has a representative of the claimed form.

Proposition 3.3 The functort® : 27 — £ is a fibration over#



Proof. Let B : A— B be an arrow in, and letY be an object in oveB. Since
Z — A is afibration, there exists i a cartesian arrolu over 3, and then the
vh span(1,h) represents, by the above, a cartesian arro@’thover 3.

SinceZ™ — £ is afibration, we may ask for its fibrewise dual**:
Proposition 3.4 There is a canonical isomorphism overbetweenZ™ and 2 **.

Proof. We describe an explicit functor: 2" — 2**. Let us denote arrows in
Z* by dotted arrows; they may be presented by vh sgarg in 2. We first
describey on vertical and cartesian arrows separately. For a verigal?", say
v: X" — X, we have the vh spatv,1) in 2", which represents a vertical arrow
v: X' --» Xin Z7*; thus we have a vh spdR, 1) in .2, which in turn represents
a vertical arrowX — X' in 2**. This arrow, we take ag(v) € 2 **. Briefly,
y(v) = ((v,1),1). — For a cartesiah : X’ — Y (over 3, say), we have a vh span
(1,h) in 27, which represents a horizontal arréw X’ --» Y in 27* (cartesian
overf3); thus we have a vh spda, h) in .27*, hence an arrow it®"**, from X’ to

Y which we take ag(h) € 2**; briefly,y(h) = (1, (1,v)).

Then, for a generaf : X — Y in 2", we factor itv.h with v vertical andh
cartesian, and pwt f) :=y(v).y(h). We leave to the reader to verify that a differ-
ent choice ofv andh gives an equivalent vh span #™*, thus the same arrow in
A

Conversely, given an arrog: X — Y in 2™, represent it by a vh span in
2%, (v,h),

h
) (A Y

v:

X
SincevV is vertical, we may pick a representativewin the form (v,1) with v :
X — X', and sincéh is cartesian inZ"*, we may pick a representative of it if the
form (1,h), with h: X’ =Y in 2". Then the compositeh: X — Y makes sense
in Z°, and it goes by to the giveng.

Example. Consider a group homomorphism: 2" — 4. It is a fibration iff
1T is surjective. Assume this. Then the fibre (over the uniqyeab of %) is
the kernel.z” of m. Everyh € 2" is Cartesian; the vertical arrows are those of
2. Then Z™* is canonically isomorphic ta?". For, an element (arrow(v, h)
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of 27 may be presented by eithét,v—1.h), so may be presented in the form
(1,x). The map(v,h) — v—1.h gives a canonical isomorphisth: 2 — 2",
This isomorphism preserves note that thet for 27 takes(v,h) to m(h). Let
us for clarity denote it7, sor’{(v,h)} = ri(h). The kernel’#” for 7' consists of
elements which may be represented in the fovrh) with ve ¢, so.#”’ may, as a
set, be identified with?” by identifying(v,1) € ¢’ C 2* withve ¢ C .2". But
this identification is an anti-isomorphism, sinpel) by J goes tov 1.1 =v1.
So ¢ is identified as a group with#°P. Thus we have a diagram of group
homomorphisms

(-)*

o OP V4
i C
J
A
4 m
B B
id

wherei(v) = {(v,1)}. In case where#Z = 1, and.Z" is the groupG, the four maps
of the top square are more explicitly‘the four group isontsms

(=)t

GoP G

v {(v1)} =
J

G* - G

{(v,h)} = v~Lh

where the inverse af is given byh — {(1,h)}. If we denote the inverse dfby
j, we can write the information in this diagram more symmaethc
i j

G°P > G* < G

with i(v) :={(v,1)} andj(h) :={(1,h)}.
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4 The case of a (pseudo-) functogg°P — Cat

It is well known that a pseudofunctér: #°P — Cat, gives rise to a fibration over
A. Itis described in, say, [2] B.1.3, or in![1] 11.8.3. This fdiron is known as the
Grothendieck construction fér. We descibe it briefly in terms of the factorization
system alluded to in Section 1.

Given a functor (or just a pseudo-functdf): #°P — Cat. Then we have
a categoryZ” whose objects are paifX,A) with A an object of%# and X an
object inF(A). Arrows (X,A) — (Y,B) are pairs(v,a), wherea : A— B and
v: X — a*(Y)in F(A) (and wherea* denotes the functdt (o) : F(B) — F(A)).
The functormr: 2" — % takes this arrow tar.

Let us denote the arrofd,-(y), a) by a <Y, thus

a*(Y) oY v

This is a Cartesian arrow overin 2", and every Cartesian arrow is of this form
modulo unique vertical isomorphisms. There is then a carabmactorization of
general arrows 2", namely, the arrow given by a pdiv, a), as above, factors
as

(X,A)

(V7 lA)

(@ (Y),A) — (V,B)

LetF’ beF followed by the dualization funct@at — Cat. Then a morphism over
a in the fibration corresponding &/, from (X, A) to (Y, B), is given similarly, but
now withv: a*(Y) — X, which in terms of the categofy(A) rather thar{F (A))°P
may be displayed in terms of the vh span

a<yY

(a*(Y),A) (Y, B)

<V7 1A) )
(X,A)

and from this, it is clear that the fibration correspondind-tds isomorphic to
2 * as described in the previous Sections.
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One motivation for the present note is to extract the puregmay theory behind
“fibrewise contravariant functors" (like fibrewise dualfyr vector bundles), and “star-
bundle functors”, as in [Kolar et al, 1993] 41.2. This islstih ongoing project.

| cannot imagine that the constructions in the present meteat known, but | do not
presently know of any available account.
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