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15 The dual fibration in elementary terms

Anders Kock

We give an elementary construction of the dual fibration of a fibration. It
does not use the non-elementary notion of (pseudo-) functorinto the category of
categories. In fact, it is clear that the construction we present makes sense for
internal categories and fibrations in any exact category.

The dual fibration of a fibrationX →B overB is described in e.g. [Borceux]
II.8.3 via a pseudofunctorF : B

op → Cat (the category of categories), by com-
posingF with the (covarariant!) dualization functorCat→Cat; choosing such an
F is tantamount to choosing a cleavage for the fibration. In thepresent section,
we give an alternative description of the dual fibration, which is elementary and
choice-free.

1 Fibrations

We recall here some classical notions.
Let π : X →B be any functor. Forα : A→ B in B, and for objectsX,Y ∈X

with π(X) =A andπ(Y) =B, let homα(X,Y) be the set of arrowsh : X →Y in X

with π(h) = α. For any arrowξ : C→ A, and any objectZ ∈ X with π(Z) =C,
post-composition withh defines a map

h∗ : homξ (Z,X)→ homξ .α(Z,Y).

(we compose from left to right). Recall thath is calledCartesianif this map is a
bijection, for all suchξ andZ.

If h is Cartesian, the injectivity ofh∗ implies the cancellation property thath
is “monic w.r. toπ”, meaning that for parallel arrowsk,k′ in X with codomain
X, and withπ(k) = π(k′), we have thatk.h= k′.h impliesk= k′.

For later use, we recall a basic fact:

Lemma 1.1 If k = k′.h is Cartesian, and h is Cartesian then k′ is Cartesian.
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The functorπ : X → B is called afibration if for every α : A→ B in B and
anyY∈X with π(Y)=B, there exists a Cartesian arrow overα with codomainY.
ThefibreoverA∈B is the category whose objects are theX ∈X with π(X) =A,
and whose arrows are arrows inX which byπ map to 1A; such arrows are called
vertical (overA).

All this is standard, dating back essentially to early French category theory
(Grothendieck, Chevalley, Giraud, Bénabou,. . . ). For a modern account, see [1]
II.8.1, [2] B.1.3, or [3]. Note that these notions are elementary (they make sense
for category objects in any left exact category), and they donot depend on the
non-elementary notions ofcleavage, orCat-valuedpseudofunctor.

2 The “factorization system” for a fibration

In the diagrams below, we try to make display vertical arrowsvertically, and Carte-
sian arrows horizontally.

Recall from the literature that ifπ : X → B is a fibration, then every arrow
z in X may be written as a composite of a vertical arrow followed by acartesian
arrow. And, crucially, this decomposition ofz is unique modulo auniquevertical
isomorphism. Or, equivalently, modulo an arrow which is at the same time vertical
and cartesian. (Recall that for vertical arrows, cartesianis equivalent to isomor-
phism (= invertible).) This means that every arrowz in X may be represented
by a pair(v,h) of arrows withv vertical andh cartesian, withz= v.h. Thus the
codomain ofv is the domain ofh. We call such a pair a “vh composition pair”, to
make the analogy with vh spans, to be considered below, more explicit. Two such
pairs(v,h) and(v′,h′) represent the same arrow iff there exists a vertical cartesian
(necessarily unique, and necessarily invertible)i such that

v.i = v′ andi.h′ = h. (1)

We say that(v,h) and (v′,h′) are equivalentif this holds. The composition of
arrows inX can be described in terms of representative vh composition pairs,
as follows. Ifzj is represented by(v j ,h j) for j = 1,2, thenz1.z2 is represented
by (v1.w,k.h2), wherek is cartesian overπ(h1) andw is vertical, and the square
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displayed commutes:

·

·

v1

❄ h1
✲ ·

·

w

❄

k
✲ ·

v2

❄

h2

✲ ·

Suchk andw exists (uniquely, up to unique vertical cartesian arrows):construct
first k as a cartesian lift ofπ(h1), then use the universal property of cartesian
arrows to constructw.

The arrowsz1 andz2 may be inserted, completing the diagram with two com-
mutative triangles, sincezj = v j .h j . But if we refrain from doing so, we have a
blueprint for a succinct and choice-free description of thefibrewise dualX ∗ of
the fibrationX → B.

Note that a vh factorization of an arrow inX is much reminiscent of the
factorization for anE-M factorization system, as in [Borceux] I.5.5, say, (with the
class of vertical arrows playing the role ofE, and the class of cartesian arrows
playing the role ofM; however, note that not every isomorphism inX is vertical.

3 The dual fibration X ∗

The construction presented in this Section is still elementary, but requires more
than just left exactness in the category where it is performed, namely exactness;
this implies that good quotients exist for equivalence relations, and that maps on
such a quotient can be defined by assigning values on representative elements for
the equivalence classes. – We present the construction in the exact category of
sets, for simplicity.

Given a fibrationπ : X → B. We describe another categoryX ∗ overB, as
follows: The objects ofX ∗ are the same as those ofX ; the arrowsX → Y are
represented by vh spans, in the following sense:
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Definition 3.1 A vh spanin X from X to Y is a diagram inX of the form

·
h

✲ Y

X

v

❄

(2)

with v vertical and h cartesian.

The set of arrows inX ∗ from X to Y are equivalence classes of vh spans from
X to Y, for the equivalence relation≡ given by(v,h) ≡ (v′,h′) if there exists a
vertical isomorphismi (necessarily unique) inX so that

i.v.= v′ andi.h= h′. (3)

We denote the equivalence class of the vh span(v,h) by {(v,h)}. They are the
arrows ofX ∗; the direction of a the arrow{(v,h)} is determined by its cartesian
parth.

Composition has to be described in terms of representative pairs; it is in fact
the standard composite of spans, but let us be explicit: Ifzj is represented by
(v j ,h j) for j = 1,2, thenz1.z2 is represented by(w,k), wherek is cartesian over
π(h1) andw is vertical, and the square displayed commutes:

·
k

✲ ·
h2

✲ ·

·

w

❄

h1

✲ ·

v2

❄

·

v1

❄

(4)

Suchk andw exists (uniquely, up to unique vertical cartesian arrows):construct
first k as a cartesian lift ofπ(h1), then use the universal property of cartesian
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arrows to constructw. (The square displayed will then actually be a pull-back dia-
gram, thus the composition described will be the standard composition of spans.)

Composition of vh spans does not give a definite vh span, but rather an equiv-
alence class of vh spans. So referring to (4), the composite of {(v1,h1)} with the
of {(v2,h2)} is defined by

{(v1,h1)}.{(v2,h2)} := {(w.v1,k.h2)}.

There is a functorπ∗ from X ∗ to B; on objects, it agrees withπ : X → B;
andπ∗({(v,h)}) = π(h). Note that ifv : X′ → X is vertical, the vh span(v,1)
represents a morphismX → X′ in X ∗.

Clearly, a vertical arrow inX ∗ has a unique representative span of the form
(v,1). So the fibres ofπ∗ : X ∗ → B are canonically isomorphic to the duals of
the fibres ofπ : X → B, i.e.(X ∗)A

∼= (XA)
op; soX ∗ is “fibrewise dual” toX

(but is not in general dual toX , since the functorπ∗ : X ∗ →B is still a covariant
functor). The arrows inX ∗, we callcomorphisms; it is ususally harmless to use
the name “comorphism” also for a representing vh span(v,h).

There are two special classes of comorphisms: the first classconsists of those
comorphisms that can be represented by a pair(v,1) where 1 is the relevant iden-
tity arrow. They are precisely the vertical arrows forX ∗ → B. – The second
class consists of those comorphisms that can be representedby a pair(1,h) where
1 is the relevant identity arrow. We shall see that these are precisely the cartesian
morphisms inX ∗. ’

We first note that if(v,h) represents an arbitrary arrow inX ∗, then

(v,h) ∈ {(v,1)}.{(1,h)}; (5)

this is witnessed by the diagram

·
1

✲ ·
h

✲ ·

·

1

❄

1
✲ ·

1

❄

·

v

❄
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since the upper left square is of the form considered in (4).

Proposition 3.2 An arrow g is cartesian inX ∗ iff it admits a vh representative
of the form(1,h).

Proof. In one direction, let(1,h) represent a comorphismY → Z overβ ∈B, and
let (v,k) represent a comorphismX → Z overα.β . We display these data as the
full arrows in the following display (inX andB):

·

X

v

❄

Y
h

✲

k′

..................................
✲

Z

k

✲

: : :

·
α

✲ ·
β

✲ ·

;

The dotted arrowk′ comes about by using the universal property of the cartesian
arrowh in X . Sincek andh are Cartesian, then so isk′, by the Lemma 1.1. So
(v,k′) is a comorphism overα, and(v,k′).(1.h)≡ (v,k), and using the cancellation
property of Cartesian arrows,(v,k′) is easily seen to be the unique comorphism
overα.β composing with(1,h) to give(v,k).

In the other direction, letg be a cartesian arrow inX ∗. Let (w,k) be an arbi-
trary representative ofg. Then by (5),g= {(w,1)}.{(1,k)}. Sinceg is assumed
cartesian inX ∗, and{(1,k)} is cartesian by what is already proved, it follows
from Lemma 1.1 that{(w,1)} is cartesian. Since it is also vertical, it follows that
it is an isomorphism inX ∗, hencew is an isomorphism inX . Sincek is cartesian
in X , w−1

.k is cartesian as well, and

(w,k)≡ (1,w−1
.k),

sog has a representative of the claimed form.

Proposition 3.3 The functorπ∗ : X ∗ → B is a fibration overB
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Proof. Let β : A → B be an arrow inB, and letY be an object in overB. Since
X → B is a fibration, there exists inX a cartesian arrowh overβ , and then the
vh span(1,h) represents, by the above, a cartesian arrow inX ∗ overβ .

SinceX
∗ → B is a fibration, we may ask for its fibrewise dualX

∗∗:

Proposition 3.4 There is a canonical isomorphism overB betweenX andX ∗∗.

Proof. We describe an explicit functory : X → X ∗∗. Let us denote arrows in
X

∗ by dotted arrows; they may be presented by vh spans(v,h) in X . We first
describey on vertical and cartesian arrows separately. For a verticalv in X , say
v : X′ → X, we have the vh span(v,1) in X , which represents a vertical arrow
v : X′

99K X in X ∗; thus we have a vh span(v,1) in X ∗, which in turn represents
a vertical arrowX → X′ in X ∗∗. This arrow, we take asy(v) ∈ X ∗∗. Briefly,
y(v) = ((v,1),1). – For a cartesianh : X′ → Y (overβ , say), we have a vh span
(1,h) in X , which represents a horizontal arrowh : X′

99K Y in X ∗ (cartesian
overβ ); thus we have a vh span(1,h) in X ∗, hence an arrow inX ∗∗, from X′ to
Y which we take asy(h) ∈ X

∗∗; briefly, y(h) = (1,(1,v)).
Then, for a generalf : X → Y in X , we factor itv.h with v vertical andh

cartesian, and puty( f ) := y(v).y(h). We leave to the reader to verify that a differ-
ent choice ofv andh gives an equivalent vh span inX ∗, thus the same arrow in
X ∗∗.

Conversely, given an arrowg : X → Y in X
∗∗, represent it by a vh span in

X ∗, (v,h),

X′ .....................
h

✲ Y

X

v

❄

.................

Sincev is vertical, we may pick a representative ofv in the form(v,1) with v :
X → X′, and sinceh is cartesian inX ∗, we may pick a representative of it if the
form (1,h), with h : X′ →Y in X . Then the compositev.h : X →Y makes sense
in X , and it goes byy to the giveng.

Example. Consider a group homomorphismπ : X → B. It is a fibration iff
π is surjective. Assume this. Then the fibre (over the unique object ∗ of B) is
the kernelK of π . Everyh ∈ X is Cartesian; the vertical arrows are those of
K . ThenX ∗ is canonically isomorphic toX . For, an element (arrow)(v,h)
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of X ∗ may be presented by either(1,v−1
.h), so may be presented in the form

(1,x). The map(v,h) 7→ v−1
.h gives a canonical isomorphismJ : X ∗ → X .

This isomorphism preservesπ ; note that theπ for X ∗ takes(v,h) to π(h). Let
us for clarity denote itπ ′, soπ ′{(v,h)}= π(h). The kernelK ′ for π ′ consists of
elements which may be represented in the form(v,1)with v∈K , soK ′ may, as a
set, be identified withK by identifying(v,1)∈K ′ ⊆X ∗ with v∈K ⊆X . But
this identification is an anti-isomorphism, since(v,1) by J goes tov−1

.1 = v−1.
So K

′ is identified as a group withK op. Thus we have a diagram of group
homomorphisms

K
op (−)−1

∼=
✲ K

X
∗

i

❄ J
∼=

✲ X

⊆

❄

B

π ′

❄

id
✲ B

π

❄

wherei(v) = {(v,1)}. In case whereB = 1, andX is the groupG, the four maps
of the top square are more explicitly‘the four group isomorphisms

Gop (−)−1
i ✲ G

G∗

v 7→ {(v,1)}

❄ J

{(v,h)} 7→ v−1
.h

✲ G

=

❄

where the inverse ofJ is given byh 7→ {(1,h)}. If we denote the inverse ofJ by
j, we can write the information in this diagram more symmetrically:

Gop i
✲ G∗ ✛

j
G

with i(v) := {(v,1)} and j(h) := {(1,h)}.
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4 The case of a (pseudo-) functorBop →Cat

It is well known that a pseudofunctorF : Bop→Cat, gives rise to a fibration over
B. It is described in, say, [2] B.1.3, or in [1] II.8.3. This fibration is known as the
Grothendieck construction forF. We descibe it briefly in terms of the factorization
system alluded to in Section 1.

Given a functor (or just a pseudo-functor)F : Bop → Cat. Then we have
a categoryX whose objects are pairs(X,A) with A an object ofB andX an
object inF(A). Arrows (X,A) → (Y,B) are pairs(v,α), whereα : A → B and
v : X → α∗(Y) in F(A) (and whereα∗ denotes the functorF(α) : F(B)→ F(A)).
The functorπ : X → B takes this arrow toα.

Let us denote the arrow(1α∗(Y),α) by α ⊳Y, thus

α∗(Y)
α ⊳Y

✲ Y

This is a Cartesian arrow overα in X , and every Cartesian arrow is of this form
modulo unique vertical isomorphisms. There is then a canonical factorization of
general arrows inX , namely, the arrow given by a pair(v,α), as above, factors
as

(X,A)

(α∗(Y),A)

(v,1A)

❄

α ⊳Y
✲ (Y,B)

.

LetF ′ beF followed by the dualization functorCat→Cat. Then a morphism over
α in the fibration corresponding toF ′, from (X,A) to (Y,B), is given similarly, but
now withv : α∗(Y)→X, which in terms of the categoryF(A) rather than(F(A))op

may be displayed in terms of the vh span

(α∗(Y),A)
α ⊳Y

✲ (Y,B)

(X,A)

(v,1A)

❄

,

and from this, it is clear that the fibration corresponding toF ′ is isomorphic to
X ∗ as described in the previous Sections.
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One motivation for the present note is to extract the pure category theory behind
“fibrewise contravariant functors" (like fibrewise dualityfor vector bundles), and “star-
bundle functors”, as in [Kolar et al, 1993] 41.2. This is still an ongoing project.

I cannot imagine that the constructions in the present note are not known, but I do not
presently know of any available account.
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