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Strong Functors and Monoidal Monads

By

AxpERS Kock

In [4] we proved that a commutative monad on a symmetric monoidal closed
category carries the structure of a symmetric monoidal monad ([4], Theorem 3.2).
We bere prove the converse, so that, taken together, we have: there is a 1-1 cor-
respondence between commutative monads and symmetric monoidal monads
(Theorem 2.3 below).

The main computational work needed consists in constructing an equivalence

between possible strengths
stap: AB—-ATHBT

on a functor, and possible ‘“tensorial strengths” on T'
V'xp X®BT>(X®BT,;

T is assumed to be a functor between categories tensored over a monoidal closed
category ¥". The equivalence is stated in Theorem 1.3. (There is a similar theorem
for the notion of cotensorial strength Ax p: (X¢h B) T — X ch BT, which we do
not include in this note.)

As an application of the theory here, we construct strength on certain functors
related to the power set monad.

If o7 is a ¥ -category, we use ¢h to denote the hom-functor /o0 x o7 =77, as
well as to denote the hom-functor of ¥~ itself.

1. Making a functor strong. Let &/ and & be categories tensored over the symmetric
monoidal closed 7, [3]. Let T': &7 — %, be a functor between the underlying cate-
gories. To a family of maps

(11) StA,A'IA(hA’—>A Tfl\A’T
we associate a family of maps
(1.2) Vxa: XQAT - X QAT
by commutativity of
X®AT T (X®RA)T
(1.3) u4 @1 ev
v
(AP (X RA)RAT @ ThXQA)T)RAT;

Sl x®a®1
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conversely, to a family (1.2) we associate a family (1.1) by commutativity of

sla,a”

AdAd’ ~ATehA' T
(1.4) u”l /lrm(ev)r
AT (APA) QAT AT G (AD AN T.

It is not difficult to prove that if the family (1.1) is natural (not necessarily ¥ -na-
tural — we have not yet assumed that 7' is a ¥ -functor), then so is the family (1.2)
constructed out of it; and if the family (1.2) is natural, then so is the family (1.1)
constructed out of it. (To prove naturality of st in the first variable, as well as proving
naturality of ¢/ in the second variable, involve diagrams consisting of seven natu-
rality squares; whereas the remaining variables involve only three-square diagrams.)

Proposition 1.1. The passages (1.1)— (1.2) and (1.2)+— (1.1) are mutually inverse
on natural families.

Proof. Each argument consists in expanding the definitions, and chasing a diagram
consisting of naturality squares (naturality of u, ev, and #”" in the one case; naturality
of u, ev, and st in the other case) and some triangles expressing the adjunction
equations between u and ev.

For any family st as in (1.1) we shall say that st commutes with units if

I

NG,
(1.5) [ 2y4 \J4r
P .

AhA ——ATHAT

commutes for all 4 €.o7. This diagram is the same as the diagram of Axiom VF1’
in [2], p. 497. Likewise, we say that st commutes with composition if the diagram of
Axiom VF2’ (same place) commutes:

M

(BhO) @A B —— A0
(1.6) -

st

(BT CT)®ATHBT) >ATHCT .

Proposition 1.2. If the family st is natural and commutes with units and composition,
then it makes T into a ¥ -functor T': o7 — B with underlying functor Ty the original
one. Conversely, the sirength st of a ¥ -functor T is a family (1.1) which is natural with
respect to the underlying functor T of T, and which commutes with unit and composition.

Proof. To prove the first part means just proving that To = T, that is, for
acslo{d, A", we should prove

(@) T = (a) (sta,a) V
(where V: ¥ — & is part (ii) of the data of the closed category ¥, see [2], 1.2).
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Using naturality of sf with respect to @, this follows if
(1a) (sta,4) V = lar;

but this holds since st commutes with units, and since * € (I) V by (jx) V is sent to
1x for any X, by 1.3.17 in [2].

Conversely, the strength of a ? -functor T commutes with units and composition
by definition; and it is natural in both variables by Proposition 1.9.4 in [2].

For any family ¢ as in (1.2) we shall say that ¢ satisfies the unit condition if

IQATE S 14T

(1.7) l.q\z'\\z glz,.m
N
AT

commutes for all 4 € &7 (Ix being the isomorphism which is part of the data of .o/
(resp. &) being tensored over 7). Likewise, we say that '’ satisfies the associativity

condition if
100 o

XRQUY AT —XRIYRN)T>X T QAT
(18) a\lg | al
XRY®AT = (XRNRQANHT

commutes for all X, Y %", 4 € o/ (here, the isomorphisms a are deducible from
data for &7 (resp. #) being tensored over ¥”; for &/ = # = ¥ , a is just the given
associativity isomorphism for & in ¥7).

Theorem 1.3. Let o7, & be categories tensored over ¥, and let T: o — Hy be a
functor. Then the correspondence of Proposition 1.1 establishes a 1-1 correspondence
between families st (as in (1.1)) making T into (the underlying of) a strong functor, and
naturel families t” (as in (1.2)) which satisfy the unit and associativity condition.

The theorem justifies calling t'" a tensorial strength on T.

Proof. A proof of the full theorem, as it stands, may be found in [5]. We shall
here only give the proof for the case that &/ = # = ¥”, which is all we need for the
main Theorem 2.3.

Let us start with ¢”, satisfying the conditions, in particular naturality; so, as we
have remarked, the family st corresponding to it is natural. By Proposition 1.2 we
need only check that sf commutes with unit and composition.

To prove commutativity of (1.5), with st defined by (1.4) in terms of ¢, we transpose
the two legs of the diagram under the adjointness

(1.9) —~RATHATh—;

then j4r yields
r:IQATS AT.
8*



116 A. Kock ARCH. MATH.

The composite §4 - st, on the other hand, yields

@1 AR = DL udT @1 (Leht) D1 (Leh (er) T) @1+ ev —
=4 ®1-wdT @Dl -ev-t"-(e) T

by naturality of ev. Now u4T X 1 and ev cancel, by adjunction equations, whence
we are left with
Ja@1-t"(en) T =
=1 (A @D T (er) T =
=", T

by naturality of ¢/ with respect to j4, and by the definition of 14 as transpose of j4.
But ¢ - 4T is 47, by the assumption (1.7).

To prove that st commutes with composition, transpose both legs of (1.6) under
the adjointness (1.9), with st expanded in terms of ¢”’. Using naturality of ev and of
t”, it is easy to see that the clockwise composite yields (1.10) (where we for ease of
notation assume (X to be strictly associative)

(BHC)@ADB)@ATL (BAC)R(ADB) @A) T —

(1.10) (MeUT () T
— s (dp YR AT ~CT.

The transpose of the counterclockwise composite of (1.6), on the other hand, is
st Qst @lar-M Qlar-ev
which by Lemma 1.3 in [4] (which says just M ®1-ev =1 R ev-ev) is
SRRy 1 Rev-ev=8tPR1IR1-1XstR1-1Rev-ev.
From the construction of st in terms of ¢/, it is obvious that this equals
SRIPQL- 1Rt 1 R(ev) T -ev =
=1@t"-1RE)T-st@1-ev=
=1Rt"1RQ)T -t (ev) T

the last equation again by definition of the relation between st and ¢”’. Finally, using

naturality of t”/, we get
1R -t (1 Qev) T+ (ev) T

which, again by Lemma 1.3 in [4], is
1@ -t (MR1)T-(ew) T,

which by the assumed associativity condition (1.8) for ' equals (1.10). This proves
that st commutes with composition M. — Let us remark that, in the proof of the
theorem in its full strength, the “associativity” of the tensor product which makes
&/ (or %) tensored over ¥, is not given as a primitive, but has to be constructed;
consequently, the Lemma 1.3 of [4], which we used twice, must be replaced in the
above argument, by an analogous (but not so easily proved) relation between com-
position and evaluation.
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Conversely, if st is a strength, the corresponding ¢ satisfies the unit and associa-
tivity condition, by Proposition 1.5 in [4]. This proves the theorem (in the case
A =F =)

Remark 1.4. Suppose T, T1: 7 — B are functors with £y : X ® BTo— (X ® B) T
derived from a strength sty of 7'y, and similarly tf derived from a strength st; of 7';.
Then a family

T4: A To —AT 1

is ¥ -natural if and only if

11

X ®BTo—2 (X ®B)To

1®1s x®=E

Y Y
commutes for all X, B. This is quite easy to see.

Let again &7, &, € be tensored over ¥". If Ty: & — #, T1: # — € are ¥ -functors,
then To- Ty: &/ — ¥ carries a canonical “composite” strength. If ¢;, ¢; are the
tensorial strengths, then the tensorial strength of 7'y - T'; corresponding to the com-
posite strength is given by

X ® (A) ToT1 —t—l-—> (X ®A TO) v ()T

(X ®A) ToT,.

The proof of this is formally the same as the proof of Lemma 1.2 in [4].

2, Making a monoidal functor strong. The results of section 1 apply in particular
to functors 7T': ¥"g — ¥ g, where ¥ is a monoidal closed category. Recall [1], ot [2],
p- 473—474, that making 7T into a monoidal functor means giving a natural

Yy ATXBT ->ARB)T

and a map
P I—-IT,

satisfying unit and associativity conditions (MF1—MF3, p. 473 in [2]). A trans-
formation between monoidal functors is monoidal, if it is compatible with v, 0
(MN1, MN2, p. 474 in [2]). The identity functor 1: ¥7¢ — ¥ carries a canonical
(identity) monoidal structure. The composite of two monoidal functors carries a
“composite” monoidal structure.

Proposition 2.1. Lef T, y, 40 be a monoidal functor ¥~ — ¢ . Let n:1 =T be a
monoidal transformation. Then the composites (A, Be ¥7):

(2.0) AQ®BT 2L ATQBT -2, (AQB)T
constitute a tensorial strength t” for T.

Proof. From MN1 it follows that r; = y°; the unit condition for ¢ is then MF1
for T', p, 90. The associativity condition is easily proved by a small diagram chase
using MN 2 for  and MF3 for T, v, °.
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Tt is easy to see that if v: T' = 7" is a monoidal transformation between monoidal
functors, and 5: 1 = T is monoidal, then the two monoidal transformations

n:l=T, qn-u:1=1

give rise to tensorial strengths with respect to which 7 is a sfrong natural transforma-
tion. In particular, if (7, v, v°), 5. u) is a monoidel monad on ¥~ (meaning that 5
and u are monoidal transformations), then the strength on T’ derived from 7 makes
(T, m, u) into a strong monad ; for, 7 and g will be strong transformations since the
diagrams

1 T2
/1/’ "f/
1 7 7
N 1 “
™ \
T ™V
T

commute, and since the monoidal transformation 7 - 5 T is easily seen to give rise
to the ““iterated’ tensorial strength ¢ -¢"T on T2. ~
We now assume (for the first time in this paper) a symmetry

4 AQXB—->BRA

given on 7. Then, by [4], to a strong monad ((T',¢"), , u) there exist fwo monoidal
structures on 7'

@.1) v AT@BT L (4@ BN T (ARBT2- 2 (A®@B)T
and
2.2) P ATQBT X . AT@BR T, A@B) ML UARBT.

where ¢’ = ¢ - ' - ¢T'. If the strong monad was derived, as above, from a monoidal
monad ((7, v, y°), 5, u) one may ask: when is p or ¢ equal to ¢ ? A partial answer
is given by

Proposition 2.2. If (T, v, v%), 4, p) is a monoidal monad and (T, p, ¥°) is a sym-
metric monoidal functor meaning ([2], MF4) that the following diagram commules

ATRBT -2~ (A®B)T

2.3) cl l,c:n

BT@ATT>(B®A)T,
then y =19y = .

Proof. From the symmetry condition (2.3), and from ¢ - ¢ = 1, it is immediate
that ¢ =c¢-t’-¢T (with t” = 77 ® 1 - p) may be described directly as 1 ® 7 - ¥.
Then

p=t-"T u=10nyp- n@®NT 9T -p=

9
&4 =1@n T @1-yp-pT-pu.
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the last equality sign just by naturality of ¢. But now, the assumption that y is a
monoidal transformation says precisely

(2.5) pypl-p=p@u-y;
v = p is immediate from (2.4), (2.5), and monad laws. The proof of g = v is similar.

Theorem 2.3. Let T, 5, u be a monad on the underlying category ¥ o of a symmelric
monoidal closed category ¥". Then there is a 1-1 correspondence between the following
two kinds of structure on T':

(i) a strength st on T making (T, st), n, u) into @ commutative monad.

(ii) @ monoidal structure y, y° on T making ((T, v, ¥°), 1, 1) into a symmetric monoidal
monad.

Proof. Starting with the symmetric monoidal structure, Proposition 2.2 asserts
that the tensorial strength constructed makes the monad commutative, and that it
gives y, 90 back by the described process. Combining this fact with Theorem 1.3
tells us that the processes (y, 99) — st — (, 90) give the original monoidal structure
back. Conversely, starting with a commutative monad, the process gives, by Theorem
3.2 of [4] rise to a symmetric monoidal structure p, »°® with 9 = #;. The tensorial

strength tZ, p constructed out of wp = ¢’ - ¢'T - p is

N4 @1 pap=1na @1 -ty pr-iysT p=
=naesr ti5T =145 Nuenr =
=ty 5
using the definition of ¢, the unit law for ¢, naturality of #, and a monad law, re-
spectively. Thus the two processes give the original ¢ back. Combining this fact with
Theorem 1.3 tells us that the processes (st) — (y, p0) — (st) give the original strength
back. This proves the theorem.

Example. Let & be an elementary topos in the sense of LAWVERE and TIERNEY, [6].
They proved that the assignment
A A2

(where {2 is the recipent object for characteristic functions) becomes a covariant
functor P by letting (f) P be the left adjoint of f ¢h £2. If & = sets, P is the power-set
functor. It is easy to make P into a monoidal functor, in fact, by the “product subset”

construction; let
py:APXBP-—>(AXB)P

be the map whose transpose (A P X BP) x (4 X B) — 2 is the characteristic func-
tion for

(2.5) eaXeg> (A Q) XA X (B X Byx (AP x BP)x (4 X B).
(ex is the subobject whose characteristic function is the evaluation (X ¢h 2) x X —0.)
Then v is a right adjoint for

%:(AXBP->APxX BP
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(defined by # - proj; = (proj;) P, i = 0,1). Since x satisfies an obvious associativity
condition, we immediately get, by passing to right adjoints, the associativity condi-
tion required for P to be a monoidal functor via y (Axiom MF3 in [2]). For y9:
1 - 1P = 2 we take the maximal map ¢: 1 — Q. Since the (only) map 2 — 1 is
a left adjoint for #, the unit conditions for {P, y, »0) are again proved by passing to
adjoints.
The “‘singleton” transformation
id 2> P

defined by letting n4: 4 - AP = A 2 be the transpose of the characteristic
function of the diagonal 4 — 4 x A can be proved monoidal by the technique
characteristic for elementary toposes: by comparing two maps into X ¢ 2, pass by
exponential adjointness to two maps into £, and prove that the two subobjects
classified by these maps are equal. Specifically, to prove % monoidal means proving
that two maps 4 X B — (4 X B)¢h 2 agree. By the procedure described, we end
up by proving that two certain subobjects of (4 X B) X (4 X B) are equal, namely
in fact both the diagonal 4 X B — (4 X B) X (4 X B).
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