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Monads on Symmetric Monoidal Closed Categories

By

Axpers Kock

Introduction. This note is concerned with “categories with internal hom and
®-functors”, and we shall use the terminology from the paper [2] by EiLENBERG
and KELLY.

The result proved may be stated briefly as follows: a ¥ -monad (‘‘strong monad’)
on a symmetric monoidal closed category ¥~ carries two canonical structures as
closed functor. If these agree (in which case we call the monad commutative), that
structure makes the monad into a closed monad, i.e. a monad in the hypercategory
of closed categories.

In a subsequent note [3] we are going to show how a commutative monad on
a symmetric monoidal closed category has for its category of algebras a category
which is itself closed in a canonical way (thus extending a theorem of LinTox [4]).

1. On strong endofunetors. Throughout, ¥~ denotes a symmetric monoidal closed
category in the sense of [2] III.6 (p. 535), i.e.

V=0, &, I,r.La,cl,p, %o, V., 1,05, L]).

Thus the left hand square bracket ™¥” is a symmetric monoidal category, and the
right hand square bracket ¢¥” is a closed category. We found it convenjent to use
ZEEMAN’s symbol ¢h for the inner hom-functor and write it between its arguments,
i.e. hom ¥ (4, B) = A ¢h B. Finally, p is a natural isomorphism

.y A@B)HC—>AD(BHO).

By [2], Theorem 1.5.2 (p. 445) and Theorem I1.6.4 (p. 498), “¢” itself”” may be
considered as a category over ¢¥” as well as over m¥". In particular, we have the
composition map

(1.2) (BhC)® (4 B)

Now, a functor ¥ Z vy may carry the structure of a closed functor ¢¥” — ¢¥”
{or, equivalently by Proposition I1.4.3 (p. 487) in [2], carry the structure of a monoidal
functor m¥” — m¥"). But since ¥~ is a ¢¥ -category and a m¥ -category, T may also
carry the structure of a strong functor, that is of a ¥ -functor (in the closed sense,
or in the monoidal sense; this again will be equivalent by Theorem 11.6.4 (p. 498)
in [2]).
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Let (7, stT) be a strong endofunctor on ¥”; so

st] g2 AcB—> AT & BT,
and the axioms VF 1 and VF 2 of [2] (p. 444—445) hold. We can then construct
a natural transformation ¢” of bifunctors

typ: AQBT (AR BT
by letting 7~1 (the underlying (pV)-1 of 3~1) act on

A}:B» Be(4 ®B)—8—t;>BT({\(A®B)T,

where f4 p is (1,gp)7, i.e. the front adjunction for the adjointness of — ® B to
B —. Using the symmetry ¢ of ®»¢", we may also define

tyz: AT®B—(AQB)T

by
tA,BZC'tB,A.(c)T‘

We shall call t;{, p the canonical right and t;, p the canonical left transformation
associated with (7', stT), respectively.

Lemma 1.1. Let o.: T = 8 be a strong transformation of strong endofunctors on ¥,
i.e. o satisfies the axiom VN of [2] (p. 466). Then the diagram

A®BT-42(AQ BT

1 ®axl luu@s

A® BS 42, (4 ® B)S

commauies, where t' and s" are the canonical right transformations associated with T
and S respectively. A similar diagram with ¢, s’ also commutes.

Proof. This follows easily from VN and from naturality of = = (p)V in the

middle variable with respect to ap.
With notation as in Lemma 1 (except that o« is not used), we prove

Lemma 1.2. The composite strong functor T - 8 has as its right- and left canonical
transformations

(1.3) A® BTS %= (4 ® BT)8"**5 (4 @ B) TS
and

ATS® B2 (4T ® B)8™**3 (4@ B TS,
respectively.

Proof. To prove that (1.3) is the canonical right transformation for 7', it suffices
to prove
(1.4) (54,87 tapS)mw=fap st7 55 (= fa,5"st™).
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In the diagram

Ja,BT

—% BTS¢ (A ® BT)S

Ja.B 1 11 hidz 11 468

Beh(A® B)—=BT (4 ® B)T—;~>BTS h(4 ® B)TS.

the right hand square obviously commutes. The left hand square also commutes,
for both composites are equal to (tl )7 (by definition and by the fact that f is the
front adjunction for x). By definition, the counterclockwise composite of the total
diagram is 7 of the rigth canonical transformation for 7' - S. The clockwise com-
posite is similarly (s} pg)7 - (1 thty 58) which clearly is (s;', a7 b1 pS)7. But this
is (1.4).

The next two lemmas are not concerned with the functor 7', but entirely with
properties of the adjunction p in (1.1), its front- and end-adjunctions,

X Yh(XRY), XeNRXTNLY

and the composition M of (1.2). The notation “ev’” for the end-adjunction signifies
“evaluation®. The first lemma then says (in the set-case) that “‘evaluating a com-
posite map is the same as evaluating twice™ ; for simplicity, we state it for associative

®.
Lemma 1.3. The diagram

(YhZ) QXY QX 2T HhZ)Q@F

M%.z ®1l lm.z

XhHOX z

commutes.

Proof. The lemma is easily derived from the first part of Proposition I1.7.3 of
[2] (p. 501) together with the associativity of M (as stated in [2], VC 3’ (p. 496)).

The next lemma is derived from Lemma 1.3 by the adjointness sz and by the
relations the f and the ¢v therefore have to each other. We omit the details of the
proof.

Lemma 1.4. The diagram
Zh(XQY @22 (YR2)h(XQY®2)REZd (Y ®2)
“ fxy®z®fr,z

hXRYRZ) e X®Y

commutes.

Both these lemmas are used in proving the following main property of the ca-
nonical right transformation ¢’ associated with a strong endofunctor 7' as considered
above.

1*
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Proposition 1.5. The following diagram commutes:

ARBROT)~——— (AR B)®CT

1® tre
(1.5) ARBRC)T tige.c
l t;’.a@c
(AR BRC)T<—— (4R B RC)T.

A similar diagram with ¢ also commutes.

Proof. We start by eliminating the use of the adjointness isomorphism 7! in the
definition of ¢’ by using the well known technique of front- and end-adjunctions. So
(1.6) tyy = (fx,v 0 @ ly7) * vy xorr-

Introducing this equation in the diagram (1.5) and leaving out the associativity a
from the notation, the counterclockwise composite is

1®fe,c®11Qst@1-1RQevor,eor fa,rec®1-st@1-1® evpeoyr,uesanT
~which trivially may be written
1®f,c®@1 fa,pec®1-1RSER1-st @11 @ evor, Beoyr* CBROT,(4©BRO)T -
This, by Lemma 1.3, is
1®fec®@1 faec®@1 1@stQ@1-t® 1 M donenr ® 1 eeruesecr
and since 7T is a strong functor, i.e. a ¥ "-functor, we may use VF 2’ of [2] (p. 497)
to write this as
1®15,c®1 fs 380 @1 -MEE pa0®1 8t @ 1+ evor s oo
Finally, we apply Lemma 1.4 and get that this equals
faepc®1-st®1-evor,sepanT:

which by (1.6) is just t:,l'® B,c. This proves commutativity of (1.5). The other half of
the proposition is automatic from this, using the coherence of a and ¢ (see e.g. [2],
Proposition IT1.1.1 (p. 512)).

There is also a mixed diagram of the same type as those of the proposition. To
prove its commutativity is again almost automatic from (1.5), coherence of a and ¢
and naturality of ¢'. We state the mixed diagram formally as

Proposition 1.6. The following diagram commutes

(AR BT)®C AR BTRO0)
kh@ 1@&6

ARBT®C ARBROYT
t.’4®s.c t:a:;:@a

(A@BR0O)T A@BRO)YT
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For the Theorem 1 of the next section we shall need some further lemmas concerned
with ¢, as well as with the data j of ¢#”, | of m¥", and the adjointness p.

Lemma 1.7. The diagrams
IQXE®L (X hX)RX I—*>X¢X
Ix l evx,x 3 Jr.x Tlvhlx

b:¢ Xh(I®X)
commate.
Proof. This may be rephrased: lx goes by = (p)V to jx. This follows easily
from the axioms MCC 2, p. 475, (for 4 = B = X) and CC 5, p. 429, of [2].
Lemma 1.8. t7 4 14T =lap: IQ AT —AT.
Proof. The left hand side is
fr,La@l-st@1-evar10ar T =fr,4aR@1- 1) 1 -stR1-evar ar =
=ju®@1-st@1-evgp a7 =
=Jjar Q@ 1-evar, a7 =
=lar,
the first equality sign being obvious, the next by Lemma 1.7, the next again by
Axiom VF 1 (p. 444) in [2], and the last by Lemma 1.7 again.

2. On strong monads. In this section we prove that the functor part 7' of a strong
monad (7, sf), 5, u carries a canonical structure as monoidal (or closed) functor.
Precisely, let ¥ be a symmetric monoidal closed category as in Section 1, let 7', 5, u
be a monad on ¥y (e, T: ¥o—>7%, n: 14y >T, u: T2 —>T), and

nar - pa = 04T - pa=1ar, par-pa=paT - ua,

let stx,y: X hY -~ XT YT make T into a ¥ -functor; then 72 becomes a ¥ -
functor by st - st in an obvious way. The identity functor on ¥ is a ¥ -functor by
means of identity maps. With this, it makes sense to require % and y to satisfy the
axiom VN ([2], p. 466); in these cases, VN becomes

XY —=XaY
(2.1) lst 1oy,
XTI QYT TS X YT

XhY-2>XT YT -L=XT2 pYT?
(2.2) 1.:: 1dpy
XT YT —mir—> XT2 hYT.

We require (2.1) and (2.2) to be satisfied for the monad considered.
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Theorem 2.1. With these data, T becomes a monoidal functor (T, v, y0): m¥ — my~
if we put w4, p equal to the composite

AT® BT > (4® BT)T - (A® B)T2 7— (A® B)T

and by putting 90 =n;: I - IT.

Proof. We have to verify the axioms MF 1, MF 2, and MF 3 of [2], p. 473. We
shall need

Lemma 2.2. (1 ® 14) " 1,4 = 1704 and (1La@n1) th 1= n1e1-

Proof. The first assertion will be automatic from the last. The last is straight-
forward from the strength of 7, (2.1).
We proceed to the proof of MF 1, i.e. commutativity of

ITRAT 4= (1@ A)T
n®1 ll‘T
(2.3) IQAT ——= AT

Replace in this diagram y by its defining expression; we then get the composite
map to be
M@V trar-traT proa-luT.

Using Lemma 2.2 and naturality of » with respect to t}' 4> this becomes
114" Nresr: hrea 14T
By the monad equations, this is t}' 4 14T, which by Lemma 1.8 is [47. This proves
MF 1. The proof of MF 2 (which is the “symmetric” of MF 1) is of course much
the same: 1@ nr-yp-raT is
1@nr-tagr tirT papr-ral,
which is easily seen to equal
ctra el (a@n) Tt ;T papr-ral-

Using Lemma 2.2, we get

crtr4 6T N4 T pags-ral,
which by the monad laws equals

ctfq ¢l 14T =c-t; - UT;
by Lemma 1.8, again, this is ¢ - lgp, that is, 747.

Finally, we prove MF 3, which in our case says that the diagram (2.4) commutes:

(AT ® BT)® CT —5—AT Q@ (BT ® CT)

pr®1 ¢1®w
(2.4) (A B)TRCT AT®R(BRC)T
(A®B)ROT—= (AR (BRO)T.
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Now, by means of the diagram

(AQB)T*®CT — (A® B)TQCT)T
T
481 (A ® B)® CT)T?

(AQB)T®OT ——>((4® B)®CT)T

which is commutative by Lemma 1.1 and Lemma 1.2, the left hand composite of
(2.4) (replacing the y’s by their defining expressions in terms of ¢/, ¢/, u) may be
written , , ,

tyer @1 45T @1 tugnror taoncrT 1w iiencT 1,

and, by naturality of 4, this again as u4 @B 00T * #4 @5 oc following the left hand
. composite in the diagram (2.5) below. Similarly, the right hand composite may be
written as w4 gen T - Hiepece) following the right hand composite in diagram
{2.5). So the monad laws and the commutativity of (2.5) will prove MF 3 and thus
the theorem.

(AT® BT)®CT £ AT® (BT ®CT) — % AT®(B® CT)T 222+ AT ® (B® ) T*
lz'@x i) I3 ¢ I3
(A®BTTR®CT -~ (4 ® BT)® CT) T 5% (A® (BTR®CT)TLEL 4 @ (BR T T)TEDL 4 @ (B® )T T

@1 l(r'@mz
ARBTQCTL>(A®BTRCTT (i) T o
T
2.5) {(4® B)®OT) T? = 4@ EBECM T (4@ (BRO)T)T?
13 (i) . Gt o
(AeB)RO0)T3 - ARBRO)T

But in this, the small uncommented diagrams are naturality squares, whereas (i) and
(iii) are commutative by Proposition 1.5 and (ii) by Proposition 1.6. This concludes
the proof.

3. On commutative strong menads. The definition of y,4 5 is asymmetric. For
reasons of symmetry, we might as well have defined another 4 5: AT ® BT —
— (4 @ B)T and proved the theorem for that one. In general,  and y will be
different ; so with 7, stZ, 5, and u as in the preceding Section, we make the following

Definition 3.1. The strong monad is called commutative if w and v agree, i.e. if
ta,p7 taT pags=1tars 14T lies-

Theorem 3.2. If the monad of Theorem 2.1 is commutative, 5y and p will be monoidal
natural transformations (i.e., satisfy the awioms MN 1 and MN 2 of [2], p. 474) with
respect fo the monotidal structure v, p° on T, the identity monoidal structure on 1y,
and the monoidal structure derived from v, O on T2. Furthermore, T will be symmetric,
i.e. sahisfy MF 4 of [2], p. 513.
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Proof. In this case, MN 1 and MN 2 for # say that the two diagrams

I —1s1 ARB ‘1> A4A®B

N

IT AT@BT—>(4A®B)T
commute. The first is the definition of 99; to see that the second commutes, replace
w by its defining composite; consider
1
®)
ARB -2 ARQBT — L -~ (AQBT~2—AR®B
I N R (R R

AT®BT —> (A® BT 57 (AQ BT —= (AR BT

Here (i) and (ii) commute by Lemma 2.2, (iii) by naturality of 5, and (iv) by the
monad laws. This proves that  is a monoidal transformation. For x, MN 2 says
that the following diagram should commute:

AT?® BT? —%—> (AT ® BT)T —:> (4 ® B) T2
(3.1) r®p u
AT ® BT - (A®B)T

This is the same as the total diagram in the diagram (3.2) below. (Not everything
in (3.2) commutes!)

AT2® BT? - (4T ® BT?)T —= (AT ® BT)T?

vr - lt'Tz
#o1 i (A®BT)T? ——F > (4AQBT)T?
L P . sl luT
(3.2) AT®BT? - » (4@ BT?)T —Z (A® BT)T?
e v e
1®n . gewr| () (A®B)T* (A@BNT
L’ uT K T
AT ® BT —Y> (A® BT)T £z (4 ® B)T?
1’3
(ARB)T

Small diagrams with a dot commute by naturality. The two diagrams with (i) in
them commute by Lemma 1.1 and Lemma 1.2 together. In the two places where
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double arrows occur, the difference is annihilated by the next following arrow, just
by the monad laws. Finally, the non-commutative diagram - is turned into a com-
mutative one when followed by uT, by the assumed commutativity of the monad
(Definition 3.1). Then it is easy diagram chasing to conclude that the total diagram
of (3.2), and thus (3.1), commutes. This proves MN 2 for u. MN 1 for u says
90 0T - ur = 90, but since y® = #;, this is just a monad law.

It remains to prove the symmetry of 7'; MF 4 says in this case that the outer
diagram in (3.3) below commutes

AT QBT > A@BT)T+E>(A® B)T* ~> (4R B)T
g = rr
(3.3) o (AT ® B)T o1 or
(i) 1@ (i) (i)
BI @ AT ——(BRATD) T —> (BOA)T* —> (B A)T.

The diagrams (i) commute by definition of ¢'. The diagram (ii) is naturality of u.
The diagram -~ becomes commutative when 4 is put on the right, by assumption
of commutativity (Definition 3.1) of the monad.

By [2], Proposition I1.4.3 (p. 487), we may rephrase (part of) the conclusions of
the Theorems 2.1 and 3.2 in terms of ¢#7, so that we have

Corollary 3.4. The functor part of a strong monad on a symmeiric monoidal closed
category carries a canonical structure as closed functor; and if the monad is commutative,
1 and p are closed transformations.

4. An application. For this application, it will be convenient to restate the results
proved in the language of 2-dimensional categories of EHRESMANN; we stick to the
terminology of [2] and call them hyper-categories. In a hyper-category 7, the
notation “monad in 27>’ makes a sense different from that of “monad on &#”’. A monad
in & is a morphism (arrow) in <7, T': A — A, together with two hyper-morphisms
(2-cells) : 14— T and u: T - T — T, satisfying the usual identities.

The hyper-category .#%¢ of monoidal closed categories has as its objects monoidal
closed categories, as morphisms monoidal (or closed) functors, as hyper-morphisms
functor transformations satisfying MN 1 and MN 2.

By Theorem I.10.7 of [2], p. 469, there is a hyper-functor %: A%/ — €as from
the hyper-category of monoidal closed categories to the hyper-category €a¢ of cat-
egories; it assigns to a monoidal closed category ¥~ the category ¥’ of ¥ -categories.
Now our Theorem 2.1 may be rephrased: a strong monad on a symmetric monoidal

closed category carries in a canonical way the structure of a morphism ¥~ Ly
in A%Y!; so % sends it to a morphism

T*: ’V*—?“V‘*

in ¥«¢. It is the one which assigns to a ¥ -category A4 the ¥ -category with the same
set of objects but with new hom-objects hom (4, B) = (4 ¢ B) T (where ¢h is the
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hom-functor for 4). The existence of such a 7% (in the case ¥~ = sets) is probably
well-known. I first learned it from LAWVERE.
In the commutative case we get

Theorem 4.1. Let T, stT, 5, u be as in Theorem 3.2. Then T« carries the structure of
a monad in the hyper-category & .H# on of symmetric monoidal categories (with & in ¥«
as defined in [2], T11.3).

Proof. By [2), Proposition II1.3.8, % becomes a hyper-functor S M os — F M o.
By our Theorem 3.2, T carries the structure of a monad in the hyper-category
& Mon. But a hyper-functor takes monads to monads.
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