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Monads on Symmetric Monoidal Closed Categories 

By 
ANDERS KOCK 

Introduction. This note is concerned with "categories with internal horn and 
|  and we shall use the terminology from the paper [2] by EIL~.NBERG 
and Kv.Imy. 

The result proved may  be stated briefly as follows : a Y/--monad ("strong monad")  
on a symmetric  monoidal closed category ~ carries two canonical structures as 
closed functor. I f  these agree (in which case we call the monad commutative), tha t  
structure makes the monad into a closed monad, i.e. a monad in the hypercategory 
of closed categories. 

In  a subsequent note [3] we are going to show how a commutat ive monad on 
a symmetric monoidal closed category has for its category of algebras a category 
which is itself closed in a canonical way (thus extending a theorem of LnCTO~I [4]). 

1. On strong endofunctors. Throughout, 3~ denotes a symmetric monoidal closed 
category in the sense of [2] I I I . 6  (p. 535), i.e. 

3 r  ([3~0, @, 1, r,l,a, c], p, [3e~0, V, g~, I, i ,j ,L]). 

Thus the left hand square bracket mY/" is a symmetric  monoidal category, and the 
right hand square bracket  cyp is a closed category. We found it convenient to use 
Z~]~MAN'S symbol q% for the inner hom-functor and write it between its arguments, 
i.e. horn 3r ~ (A, B) = A q% B. Finally, ~o is a natural  isomorphism 

(1.1) (A@B)r >Adp(B~C) .  
~A.B,C 

By [2], Theorem 1.5.2 (p. 445) and Theorem II.6.4 (p. 498), "$/" i tself" may  be 
considered as a category over c ~  as well as over m$/'. In  particular, we have the 
composition map 

(1.2) (B + c) | (A ~ B) ~1~> A + C. 

Now, a functor $:0 T_> 3e- ~ may  carry the structure of a closed funetor c3r r ~ 
(or, equivalently by  Proposition II.4.3 (p. 487) in [2], carry the structure o fa  monoidal 
functor my/" _+ m3CZ). But  since $ / i s  a *Y/'-category and a mr Y m a y  also 
carry the structure of a strong functor, tha t  is of a 3e--functor (in the closed sense, 
or in the monoidal sense; this again will be equivalent by Theorem II.6.4 (p. 498) 
in [2]). 
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Let (T, st T) be a strong endofunctor on ~ ;  so 

st~,B: A e~B-+ A T  gpBT, 

and the axioms VF 1 and VF 2 of [2] (p. 444--445) hold. We can then construct 
a natural  transformation t" of bifunctors 

t'~[B: A @ B T  ~ (A @ B) T 

by letting ~-1 (the underlying (pV) -1 of p- l )  act on 

A --> B ~ (A @ B) - B T  r (A @ B) T, 
fA,B 81 T" 

where ]A,~ is (I~| i.e. the front adjunction for the adjointness of - - @ B  to 
B e~--.  Using the symmetry  c of m ~ ,  we may  also define 

t'~,B: A T  @ B-+ (A @ B ) T  
by 

f t t  

t ~ , ~  = e .  tB,.4 �9 (c) T .  

t ; .  t 

We shall call t~, B the canonical right and ta, ~ the canonical left transformation 
associated with ( T, stY'), respectively. 

Lemma 1.1. Let ~: T => S be a strong trans]ormation o] strong endo/unctors on ~ ,  
i.e. o~ satis/ies the axiom VN o/ [2] (p. 466). Then the diagram 

A@BT t"n~(A| 

A | B,S ~'I.., (A | B),9 

(1.3) 
and 

commutes, where t" and s" are the canonical right trans/ormations associated with T 
and S respectively. A similar diagram with t', s' also commutes. 

P r o o f .  This follows easily from VN and from natural i ty of g = (p)V in the 
middle variable with respect to ~B. 

With notation as in Lemma 1 (except tha t  ~ is not used), we prove 

Lemma 1.2. The composite strong functor T �9 S has as its right- and le/t canonical 
trans/ormations 

A @ B T S  ss (A @ BT)  S G:B~"-- (A @ B) TS 

ATS @ B s'T:~>- (AT @ B)~ t'~_>N (A @ B)TS, 
respectively. 

P r o o f .  To prove tha t  (1.3) is the canonical right transformation for TS, it suffices 
to prove 

/ i  J /  

(1.4) (s ~,~ T �9 t•, B S) ~ = [A,B" St ~'" st s ( =  ]A,B" st~S). 
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I n t h e d i a g r a m  A s " B ' , B T d ~ ( A Q B T )  * t ; * B T S e b ( A Q B T ) S  

B ~ CA | B)--~-~BT ~ (.4 | BI TT-~ BTS ~ (.4 | B) TS. 

the right hand square obviously commutes. The left hand square also commutes, 
r  

for both composites are equal to (t~, B):~ (by definition and by the fact that  / is the 
front adjtmetion for ~). By definition, the cotmterclockwise composite of the total 
diag'ram is ~ of the rigth canonical transformation for T -  S. The clockwise corn- 

Pc s s  .*e t s  

posite is similarly (s~.B~/~ �9 (1 ~ t~,~S) w]~ch clearly is (sA,B~ �9 t~,BS)~. But  this 
is (1.4/. 

The next  two lemmas are not concerned with the functor T, but entirely with 
properties of the adjunction p in (1.1), its front- and end-adjunctions, 

X S~'~, Z ~ ( Z |  (X,~Y)| Z 

and the composition M of (1.2). The notation "ev" for the end-adjunetion signifies 
"evaluation". The first lemma then says (in the set-case) that  "evaluating a com- 
posite map is the same as evaluating twice"; for simplicity, we state it for associative 
| 

Lemma 1.3. The diagram 

commutes. 

(x ~z) | ~.~.~ .. z 

P r o o f .  The lemma is easily derived from the first part  of Proposition II.7.3 of 
[2] (p. 501) together with the associativity of M (as stated in [2], VC 3' (p. 496)). 

The next  lemma is derived from Lemma 1.3 by the adjointness x and by the 
relations the / and the ev therefore have to each other. We omit the details of the 
proof. 

Lemma 1.4. The diagram 
�9 Y ~ z  

Z d ~ ( X | 1 7 4  ~ '~ .X~ ( ( Y | 1 7 4 1 7 4 1 7 4  

II F 
z,b(x|174 - s x |  x| 

commutes. 

Both these lemmas are used in proving the following main property of the ca- 
nonical right transformation t" associated with a strong endofunctor T as considered 
above. 

1" 
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Proposition 1.5. The/ollowing diagram 

A | (B | CT) 
" 

1| tB.c 

(1.5) A @ (B @ C) T 

commutes: 
a 
_~ (A | B) | VT 

I 
(A| (B | C)) T @ ((A | B) | C) T. 

A similar diagram with t' also commutes. 

P r o o f .  We start by eliminating the use of the adjointness isomorphism ~-1 in the 
definition of t" by using the well known technique of front- and end-adjunctions. So 

/ /  

(1.6) tx,r = (([x, Y" st T) @ 1YT) " eVrT,(X| 

Introducing this equation in the d ia~am (1.5) and leaving out the associativity a 
from the notation, the counterclockwise composite is 

1 | c | 1.1 | st | 1.1 @ evcT,(]3|174 | 1" st @ 1" 1 | ev(]3| |174 

which trivially may be written 

1 @/B, C @ 1" [A, ]3 | @ 1" 1 @ st @ 1" st | 1" 1 @ evcT,(]3 | ev(, | | | 

This, by Lemma 1.3, is 

l @ []3,c@ l .  /A,]3| l .  l @s t@ l . s t@ l ~z(]3| �9 .~,.t CT, (A | | (~) 1 �9 eVcT,( A | | 

and since T is a strong functor, i.e. a ~-functor ,  we may use VF 2' of [2] (p. 497) 
to write this as 

~jT B |  go'~ 
1 |  | 1 "[A,]3| @ 1 "~,.LC,A|174 ~ 1" st | 1 "| A|174 

Finally, we apply Lemma 1.4 and get that  this equals 

/A| @ 1" st @ I'eVcT,( A|174 

which by (1.6) is just tA| This proves commutativity of (1.5). The other half of 
the proposition is automatic from this, using the coherence of a and c (see e.g. [2], 
Proposition I I I . l .1  (p. 512)). 

There is also a mixed d i a~am of the same type as those of the proposition. To 
prove its commutativity is again almost automatic from (1.5), coherence of a and c 
and naturahty of t". We state the mixed d ia~am formally as 

Proposition 1.6. The/ollowing diagram commutes 

( A @ B T ) @ C  - a > A @ ( B T @ C )  

((A @ B) @ C) T aT > (A @ (B @ C)) T .  
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For the Theorem 1 of the next  section we shall need some further lemmas concerned 
with t", as well as with the data  j of c$/" 1 of myr, and the adjointness p. 

Lemma 1.7. The diagrams 

I |  j x | 1 7 4  Z S~ = X C X  

/r174 
commute. 

P r o o f .  This may  be rephrased: lx goes by  ~ = (p)V to jx. This follows easily 
from the axioms MCC 2, p. 475, (for A = B = X) and CC 5, p. 429, of [2]. 

//  Lemma 1.8. tI,A'IAT----1AT: I QAT--> AT. 

P r o o f .  The left hand side is 

/ I,A @ 1" 8t ~ 1 " eVA T, I | A T " l A T = ] I,A (~) 1- (1 ~ lA ) @ 1" st @ 1 �9 eVA T,A T = 

= jA (~  1" 8t ~ 1"  eVAT,AT = 

= jAT  (~  1 �9 eVAT,AT = 

= IAT, 

the first equality sign being obvious, the next  by Lemma 1.7, the next  again by  
Axiom VF 1 (p. 444) in [2], and the last by  Lemma 1.7 again. 

2. On strong monads. In  this section we prove tha t  the functor par t  T of a strong 
monad (T, st), U, ~ carries a canonical structure as monoidal (or closed) functor. 
Precisely, let r  be a symmetric monoidal closed category as in Section 1, let T, 7,/~ 
be a monad on r (i. e., T:  r --> YP0, ~7 : 1 ~o --> T, ~u : T 2 __> T), and 

T]AT'[~A ~ ~ A T ' ~ t A  = 1AT, ~AT'[AA = [ 2 A T ' ~ A ,  

let stx, r: X e ~ Y - + X T ~ Y T  make T into a 3r then T2 becomes a 3~- 
funetor by  st �9 st in an obvious way. The identi ty functor on 3~0 is a SP-functor by 
means of identi ty maps. With this, it makes sense to require ~7 and/x  to satisfy the 
axiom VN ([2], p. 466); in these cases, V57 becomes 

x , . l , r  ~ , . x c r  

(2.1) 1" l ~r 
XT e~ YT ~r X ~ YT 

(2.2) 

X e ~ Y  8t~.XTe~YT 8t~.XTge~YTg 

~[ st 1 1 ~ l~r 

XTgpYT ~xr ~ XT2e~ YT. 

We require (2.1) and (2.2) to be satisfied for the monad considered. 
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Theorem 2.1. With  these data, T becomes a monoidal [unctor (T, ~v, V~ mS/'-> m3V 
i /  we pu t  VA,B equal to the composite 

A T  | B T  ,,-:;---~ (A | B T )  T ,,-7;7-~_ (A (~ B)  T2 - - - - +  (A | B)  T 
ta ,~T  t.a,n T $~.4| n 

and by put t ing V o = Vx : I -+ I T .  

P r o o f .  We have to verify the axioms MF 1, MF 2, and MF 3 of [2], p. 473. We 
shall need 

t i t  

Lemma 2.2. (UI ~) 1A)" tz,a = ~z|  and (1A ~) UI)" tA,X = ~a| 

P r o o f .  The first assertion will be automatic from the last. The last is straight- 
forward from the strength of 7, (2.1). 

We proceed to the proof of MF 1, i.e. commutativity of 

ITQAT "'--(IQA)T 

(2.8) I Q A T  z~T " A T  

Replace in this diagram ~v by its defining expression; we then get the composite 
map to be 

t i t  

~71 Q 1 �9 tl,AT" ti, A T " / t i |  a �9 1A T .  
s ,  

Using Lemma 2.2 and naturali ty of U with respect to tx,a, this becomes 
t t  

tLa " U ( I  |  " [dlem " 1 A T .  

By the monad equations, this is t'z:a " lA T ,  which by Lemma 1.8 is lAT. This proves 
MF 1. The proof of MF 2 (which is the "symmetric" of MF 1) is of course much 
the same : 1 (~) ~Tx" ~P" rA T is 

p r r  

1 Q~I" ta.IT" tA,IT"/z l |  rA T, 

which is easily seen to equal 
t r  s t  

c.  ti, A �9 c T  . (1A Q ~7~) T "  ta,z T " t za |  �9 r A T .  

Using Lemma 2.2, we get 
t l  

c . t i ,a " c T .  ~7a| T .  tza |  . rA T ,  

which by the monad laws equals 
i t  p r  

c.  tLA . CT .  rA T = c .  tI.A " IA T ;  

by Lemma 1.8, again, this is c .  1AT, that  is, rAT. 
Finally, we prove MF 3, which in our case says that  the diagram (2.4) commutes: 

(2.4) 

(AT @ BT) @ CT ~- a =AT@(BT@CT) 

(A@B)T@CT AT@(B@C)T 

((A@B)@C)T ~f ~ (A@(B@C))T. 
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Now, by means of the diagram 

(A @ B ) T 2 @ C T - - - - T ~ ( ( A  @ B ) T  @ C T ) T  

j,| ((A @ B) @I CT) T~ 

( A @ B ) T @ C T  t" , , ( ( A @ B ) @ C T ) T  

which is commutative by Lemma 1.1 and Lemma 1.2, the left hand composite of 
(2.4) (replacing the V's by their defining expressions in terms of t', t", #) may be 
written 

| 1.6% r | 1. th d T. 

and, by naturality of #, this again as/~((~ | | "/~(A |174 following the left hand 
composite in the diagram (2.5) below. Similarly, the right hand composite may be 
written as #~|174174174 following the right hand composite in diagram 
(2.5). So the monad laws and the commutativity of (2.5) will prove MF 3 and thus 
the theorem. 

(AT@BT)| ~ ~ AT| *|174 t| AT| z 

~"| ,i) I" ~" (l| 1" 
(A@BT)T| t-!:-~((A@BT)|174 . (A| 

(A ~ B) TZ @ GT ~' . ((A @ B) T @ CT) T (ii) e'e "T 

~ t'T 
(2.5) ( (A @ B) | CT) T z .r, * (A @ (B @ CT)) T z (,| (A @ ( B ~ C) T) T z 

((A| ,r. L (A(~(B@C))T 3 

But in this, the small uncommented diagrams are naturality squares, whereas (i) and 
(iii) are commutative by Proposition 1.5 and (ii) by Proposition 1.6. This concludes 
the proof. 

3. On commutative strong monads. The definition of VA,B iS asymmetric. For 
reasons of symmetry, we might as well have defined another VA,s: A T  @ B T  --> 
--> (A @ B ) T  and proved the theorem for that  one. In general, V and V will be 
different; so with T, st T, ~, and # as in the preceding Section, we make the following 

Definition 3.1. The strong monad is called c o m m u t a t i v e  i/ V and V agree, i.e. i/ 
p z p  z l  �9 

t A , B T  " tA,B T " /~A | - =  t A T ,  B " t~,B T " / ~  |162 

Theorem 3.2. I] the monad o] Theorem 2.1 is commutative, ~ and/~ will be monoidal 
natural trans/ormations (i.e., satis/y the axioms MN 1 and MN 2 o] [2], p. 474) with 
respect to the monoidal structure V, V ~ on T, the identity monoidal structure on l~,0, 
and the monoidal structure derived ]rom V, v2~ on T 2. Furthermore, T will be symmetric, 
i.e. satis[y MF 4 o] [2], p. 513. 
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P roof .  In this case, MN 1 and MN 2 for ~ say that  the two diagrams 

- I A ® B  ~ ,. A ® B  

IT A T @ B T - - w - ~ ( A @ B ) T  

commute. The first is the definition of V0; to see that  the second commutes, replace 
~o by its defining composite; consider 

1 

I (i, 
A @ B  ~®"~.A®BT ¢" , ( A ® B ) T . , "  A ® B  

'7®'~1 ~ )  1'~ (/ii) ~'~ (iv) 1,' 

ATQBT y(A@BT)T r - - r - ~ ( A ® B ) T ° - 7 ( A ® B ) T  

Here (i) and (ii) commute by Lemma 2.2, (iii) by naturality of 
monad laws. This proves tha t  ~2 is a monoidal transformation. 
that  the following diagram should commute: 

(3.1) 

7, and (iv) by the 
For #, MN 2 says 

AT2@BT 2 ~' ,. (AT@BT)T ~T---(A@B)TZ 

AT@BT ~, > (A@B)T 

This is the same as the total diagram in the diagram (3.2) below. (Not everything 
in (3.2) commutes!) 

AT 2 @ BT~ 

(3.2) 

~®~ (i) 

t' 

,. (AT @ BT 2) T 

(A ® BT~) T2 

,. (A ® BT2) T 

(I ®~OT (i) 

• (A @ BT) T 

AT @ BT2 

AT@BT 

¢'T ,. (AT @ BT) T~ 

-~- It'T~ 

t"T~ l, (A @ BT) T 3 

t"T , (A ® BT) T z 

(A ® B) T 3 (A ® BT) T 

, ( A ® B ) T 2  

(A ® B) T 

Small diagrams with a dot commute by naturality. The two diagrams with (i) in 
them commute by Lemma 1.1 and Lemma 1.2 together. In the two places where 
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double arrows occur, the difference is annihilated by  the next  following arrow, just 
by  the monad laws. Finally, the non-commutat ive diagram - -  is turned into a com- 
muta t ive  one when followed b y / t  T, by  the assumed commutat iv i ty  of the monad 
(Definition 3.1). Then it is easy diagram chasing to conclude tha t  the total  diagram 
of (3.2), and thus (3.1), commutes.  This proves MN 2 for #. MN 1 for tt says 
yj0. F0 T � 9  ---- yj0, but  since F0 _-- ~x, this is just a monad law. 

I t  remains to prove the symmet ry  of T;  MF 4 says in this case tha t  the outer 
diagram in (3.3) below commutes 

(3.3) 

A T @ B T  t' ~ ( A @ B T ) T  t " T , ~ ( A @ B ) T 2  I" ~ . ( A @ B ) T  

c ( A T  @ B) T cr 

(i) .Ic r (i) (ii) 

B T @ A T  r r ( B @ A ) T 2  - - ( B @ A ) T .  
,u 

The diagrams (i) commute by  definition of t'. The diagram (ii) is natural i ty  of /z .  
The diagram - -  becomes commutat ive when/z  is put  on the right, by assumption 
of commuta t iv i ty  (Definition 3.1) of the monad. 

By [2], Proposition 11.4.3 (p. 487), we m a y  rephrase (part of) the conclusions of 
the Theorems 2.1 and 3.2 in terms of c~ ,  so tha t  we have 

Corollary 3.4. The/unctor part o / a  strong monad on a symmetric monoidal closed 
category carries a canonical structure as closed/unctor; and i/the monad is commutative, 

and [a are closed trans/ormations. 

4. An application. For this application, it will be convenient to restate the results 
proved in the language of 2-dimensional categories of E~v.SMA_~N; we stick to the 
terminology of [2J and call them hyper-categories. In  a hyper-category d ,  the 
notation "monad  in ~r makes a sense different from tha t  o f " m o n a d  on d " .  A monad 
in d is a morphism (arrow) in d ,  T:  A --> A, together with two hyper-morphisms 
(2-cells) ~: 1A --> T and /z :  T �9 T --> T, satisfying the usual identities. 

The hyper-category ~ f  of monoidal closed categories has as its objects monoidal 
closed categories, as morphisms monoidal (or closed) functors, as hyper-morphisms 
functor transformations satisfying MN 1 and MN 2. 

By Theorem 1.10.7 of [2], p. 469, there is a hyper-funetor . :  Js Wag from 
the hyper-category of monoidal closed categories to the hyper-category ~ of cat- 
egories ; it assigns to a monoidal closed category $/~ the category $/~, of ~-categories.  
Now our Theorem 2.1 may  be rephrased : a strong monad on a symmetric monoidal 

closed category carries in a canonical way the structure of a morphism $/" ~ 
in Js so * sends it to a morphism 

T~: ~ ,  --> $/~, 

in ~=?.  I t  is the one which assigns to a ~r A the t f -ca tegory  with the same 
set of objects but  with new horn-objects horn (A, B) = (A qh B) T (where r is the 
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hom-func tor  for A). The exis tence of  such a T, (in the  case $/" ~ sets) is p r o b a b l y  
well-known. I first learned  i t  f rom LAWVE~E. 

I n  the  c o m m u t a t i v e  case we get  

Theorem 4.1. Let T, st T, 7, t % be as in Theorem 3.2. Then T, carries the structure o] 
a monad in the hyper-category 5PJl~#z o] symmetric monoidal categories (with Q in r 
as defined in [2], I I I .3 ) .  

P r o o f .  B y  [2], P ropos i t ion  I I I .3 .8 ,  * becomes a hyper - func to r  5 P J / ~  --> S z ~ g ~ .  
B y  our Theorem 3.2, T carries the  s t ruc tu re  of a m o n a d  in t he  hype r -ca t egory  
5Pd/~#~. B u t  a hyper - fune to r  t akes  monads  to monads .  
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