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Preface

In this course we study algorithms, polytopes and matroids related to graphs.
These notes are almost complete, but some of the examples from the lectures
have not been typed up, and some background information, such as proper
definitions are sometimes lacking. For proper definitions we refer to: Bondy and
Murty: ”Graph Theory”. Besides these minor problems, the notes represent
the content of the class very well.
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Introduction, summary and conventions

If we regard a simple graph as just a subset E ⊆ V × V , we a priori have little
mathematical structure to play with. As a result many proofs are ad hoc and
graph theory becomes a difficult field to master. In this class we present one
solution to this problem, namely we will study graphs in terms of polytopes
and matroids. This philosophy fits well with the combinatorial optimisation
approach to graph theory. We will soon realise that various algorithms for
optimisation problems involving graphs are closely related to general standard
techniques in mathematical programming such as separation, linear program-
ming (LP), LP-duality, ellipsoid methods, relaxations and integer linear pro-
gramming (ILP). In the following paragraphs we give an overview of some main
results of this course. The overview will make most sense at the end of the class.

An important aspect of algorithms is that of producing certificates of cor-
rectness. Starting out with Egerváry’s bipartite maximum matching algorithm
(Algorithm 1.3.9), we see that indeed the correctness of its result is certified by
a minimum covering. For Edmonds’ blossom algorithm (Algorithm 1.4.8) for
the non-bipartite case such a certificate is a so called barrier. Egerváry’s and
Edmonds’ algorithms both work by finding augmenting paths. Non-existence of
augmenting paths implies optimality (Berge’s Theorem 1.2.3).

While the weighted version of the bipartite matching problem can be solved
as a linear program with a reasonable number of inequalities, we also present the
Hungarian algorithm (Algorithm 1.5.3) which runs in polynomial time. For the
non-bipartite weighted case, the situation is more complicated as the required
number of inequalities for describing the perfect matching polytope is exponen-
tial (Theorem 1.7.6). Therefore we rely on a quick separation algorithm (Al-
gorithm 1.7.16) by Padberg and Rao and the ellipsoid method (Section 1.7.4).
The ellipsoid method is more of theoretical interest than it is practical. A
practical method is out of the scope of this course. Finally, maximal weight
matching is applied to the Chinese postman problem (Algorithm 1.7.2).

In connection to the matching problems, we need algorithms for finding dis-
tances in graphs. While Dijkstra’s algorithm (Algorithm 1.6.1) is assumed to
be known, these notes contain several other algorithms (Algorithm 1.6.4 (War-
shall), Algorithm 1.6.5 (Bellman-Ford-Moore) and Algorithm 1.6.12 (Floyd)),
which are either faster in certain situations or deal with negative weights. These
algorthims were presented in the “Graph Theory 1” class. Therefore, in class,
we will try only to get on overview of the algorithms when needed, for example
when they are used in Algorithm 1.5.3 and Algorithm 1.7.2. In particular, the
exam topics this year will not be the same as for the 2016 exam, see Appendix B.

The second half of the course is concerned with the theory of matroids. As
we are interested in optimisation, we quickly turn the independent set char-
acterisation (Definition 2.4.2) into one in terms of matroid polytopes (Defini-
tion 2.7.2 and Theorem 2.7.4) and a characterisation in terms of the greedy
algorithm (Algorithm 2.8.2 and Theorem 2.8.4). Assuming positive objective
function, we can think of the greedy algorithm as solving an LP problem over
a matroid polytope.

The question of whether a graph has a Hamiltonian path can be phrased as
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a question about the largest size of a common independent set of three matroids
(Algorithm 2.10.4). If we think of the matroids as being represented by oracles,
we conclude that matroid intersection for three matroids is very difficult (the
Hamiltonian cycle problem is one of Karp’s original 21 NP-hard problems).
Surprisingly, the situation is much simpler for two matroids. We do not present
an algorithm but just see that Hall’s Theorem 1.2.20 has generalisations to
matroids (Theorem 2.9.6) and refer to [10] for an algorithm. As an example
we study the optimum branching problem (Section 3.1) and give an effective
algorithm. We then notice that this can be phrased as an intersection problem
of two matroids (Exercise 3.1.22).

Finally, we discuss various graph colouring themes: Brooks’ Theorem 4.1.5,
chromatic polynomials (Section 4.2) and planar graph colourings (Section 4.3).

It comes as no surprise that the combinatorial graph problems have ap-
plications in operations research. We give some examples of this through the
course (although some situations seem somewhat artificial): Exercise 1.1.3, Sec-
tion 1.7.1, Exercise 3.1.19.

Conventions

Remark 0.0.1 Consider a set V . An edge is an unordered pair e = (u, v) with
u, v ∈ V . The elements of V are called vertices, while the vertices u and v are
called the ends of e. If u = v then e is called a loop. If E is a collection of edges,
then G = (V,E) is called a graph. We will almost always assume that E is a
set and not a multiset, meaning that there can be only one copy a particular
unordered pair (u, v) - in other words, most of the time we do not allow parallel
edge i.e. edges with the same set of ends. In only a few places we make an
exception and allow parallel edges (e.g. Section 1.7).

This is different from the Graph Theory 1 course, where parallel edges were
allowed and we had to assign names to each edge to allow us to distinguish it
from other edges with the same ends. To ease notation, often one chooses to
draw graphs rather than writing down the set of vertices and edges.

Remark 0.0.2 Similarly, by a directed graph we mean a pair G = (V,E) where
E is a set of ordered pairs (u, v) ∈ V ×V called arcs. A more typical notation is
to use the letter A instead of E. When discussing graphs, it is always important
to be aware of whether we are considering directed or undirected graphs.

Remark 0.0.3 We will always assume that the vertex and edge sets V and E
of a graph G = (V,E) are finite.
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1 Matchings

In this section we study matching problems carefully. One purpose will be to
convince ourselves that “studying polytopes in graph theory is OK”.

1.1 Matchings

Definition 1.1.1 A matching in a graph G = (V,E) is a subset M ⊆ E such
that M contains no loops and no two edges of M share an end.

We say that a matching M is maximum if |M | is as large as possible. Similarly,
if we have a function w : E → R (called a weight function), a maximal weight
matching in G is a matching M in G with w(M) :=

∑
e∈M w(e) as large as

possible. (In contrast to these, a maximal matching is a matching not contained
in any larger matching. This notion is only of limited interest.)

We will consider four different situations:

• Maximum matching in a bipartite graph.

• Maximum matching in a general graph.

• Maximal weight matching in a bipartite graph.

• Maximal weight matching in a general graph.

Since we only consider finite graphs, there exist algorithms for all four cases.
Simply look at all possible subsets of the edges and see which ones are matchings
and pick the one with largest weight or largest size, respectively. This is a
terrible algorithm since the number of subsets of E is exponential in |E|. Our
goal is to present better (polynomial time) algorithms.

Definition 1.1.2 We say that an edge e in a matchingM in a graphG = (V,E)
covers a vertex v ∈ V if e is incident to e, meaning that v is an end of e.
Similarly we say that “M covers v” or “v is M -covered” if some e ∈ M covers
e. A matching M is called perfect if all vertices are M -covered i.e. if 2|M | = |V |.

Exercise 1.1.3 In Saarbrücken 160 students are taking the Analysis 1 class.
They need to attend TA sessions (TØ). There are 8 different time slots to
choose from, say Tuesday 12-14 or Thursday 14-16 and so on. Each slot has
room for 20 students. Using an online form the students choose their first
priority, second priority and third priority. When a student is assigned his/her
first priority we get three points of happiness. Similarly we get two points for a
second priority, one point for a third priority and zero points if we had to choose
a time that did not suit the student. Based on the data from the online form
we want to find an assignment of students to classes maximising happiness.

1. Phrase this problem as a weighted matching problem. (Hint: You may
want to consider a graph with 320 vertices.)

2. How would you phrase this matching problem as an Integer Linear Pro-
gramming problem (ILP)?
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3. What is a doubly stochastic matrix?

4. Will the Linear programming relaxation have its optimum attained at
integral points? Is the feasible region of the LP a lattice polytope? (Hint:
prove that the set of doubly stochastic matrices is the convex hull of 0-1
doubly stochastic matrices.)

5. For how many students would you expect this problem to be solvable with
Dantzig’s Simplex Method?

6. Can matching problems be used to schedule more classes simultaneously?
Can linear programming problems?

Solution.

1. We model the problem as a weighted matching problem on the complete
bipartite graph on 160+160 vertices. There is one vertex for each student
and one vertex for each seat in each class. Weights are assigned to the
160 · 160 edges according to the students priorities. A weight of 0 is
assigned to edges connecting a student to a seat in a class which the
student did not have as a priority.

2. Phrased as an ILP we let x ∈ Z160·160 be a vector with one entry per edge.
It will represent a matching M with xe = 1 if and only if e ∈ M – and
zero otherwise. We are looking for an x such that ω ·x is maximal subject
to Ax = (1, . . . , 1)t and x ∈ Z160·160 where A is the incidence matrix of
the graph.

The answers to 3 and 4 follow from Exercise 16.2.19 on page 430 in [1]. See
also [6]. An alternative answer can be found in [6, Theorem 4.26]. Question 6
is quite open-ended.

1.2 When is a matching maximum?

Definition 1.2.1 Let M be a matching in a graph G. A path P in G is called
an M -alternating path if it alternately contains an edge from M and an edge
from E(G) \M . Let x and y be two different vertices. An M -alternating xy-
path1 is called M -augmenting if both x and y do not appear as ends of edges
in M .

A spanning subgraph of a graph G = (V,E) is a subgraph H = (V, F )
where F ⊆ G. That is, when talking about spanning subgraphs, we are not
really interested in the vertex set since that is always the same as the original
graph. On the other hand a subset of the edge set uniquely determines a
spanning subgraph. In particular, a matching M in G = (V,E) gives rise to
the spanning subgraph (V,M).

The symmetric difference of two sets A and B is defined as A∆B := (A ∪
B) \ (A ∩B). Let F and F ′ be subgraphs of a graph G. Then their symmetric
difference F∆F ′ is the (spanning) subgraph of G with edge set E(F )∆E(F ′).

1An xy-path is a path starting at x and ending at y.
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Figure 1: A matching M in a graph G. An M -augmenting path P in G. The
symmetric difference of M and P .

As the following example suggests, taking symmetric difference of a match-
ing M with an M -augmenting path P always gives a matching M ′ := M∆P
with |M |+ 1 edges.

Example 1.2.2 In Figure 1 the size of a matching M increases from 3 to 4 by
taking symmetric difference with an M -augmenting path P .

Theorem 1.2.3 (Berge’s Theorem, [1, 16.3]) Let M be a matching in a
graph G. The matching M is a maximum matching if and only if G does not
contain an M -augmenting path.

Proof. ⇒: If G contains an M -augmenting path P , then P∆M is a matching
in G. Moreover, |P∆M | = |M | + 1 because P contains one more edge from
E \M than from M .
⇐: If M was not a maximum matching. We must show that an augmenting

path exists. Let M ′ be a maximum matching. Then H := M∆M ′ is not empty
and H must contain more edges from M ′ than from M . Since every vertex in
the edge-induced subgraphs 2 G[M ] and G[M ′] has degree 1, the degrees of the
vertices of G[H] is 0, 1 or 2. We conclude that G[H] is the union of cycles and
paths. These are all M -alternating. Because H contains more edges from M ′

than from M , one of the components3 of G[H] is a path P starting and ending
with an edge from M ′. Let u be one end of P and e′ ∈ M ′ the incident edge.
Then u is not an end of an edge e ∈ M (If it were, then because e 6∈ E(H) we
get e ∈ M ′, contradicting that M ′ is a matching.). Similarly the other end of
P is not matched in M . We conclude that P is M -augmenting. 2

1.2.1 Coverings

If an edge e covers a vertex v we also say that v covers e.

Definition 1.2.4 Let G = (V,E) be a graph. A covering of G is a subset
K ⊆ V such that every edge of E is covered by some vertex of K.

Exercise 1.2.5 The graph G in Figure 2 has a covering consisting of the three
red vertices. Find all coverings of G.

2See Appendix A.
3See Appendix A.
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Figure 2: A graph G with a matching consisting of the two (bold) edges. The
non-bold edges do not form a matching. The red vertices form a covering of
G, while the white do not. The covering number happens to be β(G) = 3 and
matching number α′(G) = 2.

Definition 1.2.6 The covering number β(G) of a graph is the minimal number
of vertices in any covering of the graph G.

Example 1.2.7 The covering number of the graph in Figure 2 is β(G) = 3.

Definition 1.2.8 The matching number α′(G) of a graph G is the maximal
number of edges in a matching of G.

Exercise 1.2.9 Show that the matching number of the graph G in Figure 2 is
α′(G) = 2 by listing all matchings in G. How many matchings are there?

Example 1.2.10 Let n be even and let Gn be the n× n grid graph ([1, page
30]) Pn�Pn, but with two diagonally opposite vertices deleted. What is the
matching number of Gn? (Hint: can a chess board with two opposite corners
be tiled by (64-2)/2=31 domino pieces?) What is the covering number of Gn?

Lemma 1.2.11 Let G be a graph with matching M and covering K. Then
|M | ≤ |K|.

Proof. Each v ∈ K can only cover a single edge of M . To cover the whole
graph, X mush have at least |M | vertices. 2

Proposition 1.2.12 For every graph G its matching number is at most its
covering number:

α′(G) ≤ β(G).

Proof. Because we only consider finite graphs, G must have a maximum match-
ing M∗ and a minimum covering K∗. Then by Lemma 1.2.11:

α′(G) = |M∗| ≤ |K∗| = β(G)

as desired. 2

In Example 1.2.10 above, the remaining 30 white squares serve as a covering of
G8.
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Exercise 1.2.13 Come up with a small graph G where α′(G) 6= β(G).

Theorem 1.2.14 (König-Egerváry) For any bipartite graph G, we have α′(G) =
β(G).

Notice that the graph in Example 1.2.10 is bipartite.

Exercise 1.2.15 Let G be a graph. Argue that a maximum matching in G
can be found by solving the following Integer Linear Programming problem:

maximise (1, . . . , 1)t · x

subject to Ax ≤ (1, . . . , 1)t and x ∈ N|E(G)|

where A is the incidence matrix of G. (Notice: In Exercise 1.1.3 we knew that
the matching we were looking for would match all vertices and there we had
and equality Ax = (1, . . . , 1)t. Here, however we have an inequality).

Exercise 1.2.16 A matrix is totally unimodular if any square submatrix has
determinant −1, 0 or 1. Prove that the incidence matrix of a bipartite graph is
totally unimodular ([1, Exercise 4.2.4]).

Exercise 1.2.17 Prove that in case of a bipartite graph the feasible region of
the LP relaxation of the Integer Linear Program in Exercise 1.2.15 has all its
vertices in N|E(G)|. (See [1, Theorem 8.28]).

Exercise 1.2.18 Let G[X,Y ] be a bipartite graph. In Exercise 1.2.15 we
phrased a maximum matching problem as an Integer Linear Program and we
have proved with the Exercises above that we can find find an optimal solution
via linear programming.

1. State an Integer Programming problem for finding a minimal cover of G.

2. Consider the LP relaxation. Is the feasible region a lattice polytope?

3. What is the dual of the LP problem?

Exercise 1.2.19 (Proof of Theorem 1.2.14) Combine the exercises above
to get a proof of Theorem 1.2.14.

1.2.2 Hall’s Theorem

For a moment assume that G is bipartite with bipartition V = X ∪ Y . We
answer the question of when we can find a matching M , matching all vertices
of X. Recall from Graph Theory 1, that for S a subset of the vertices of a
graph, N(S) denotes the set of neighbouring vertices of vertices in S.

Theorem 1.2.20 (Hall’s Marriage Theorem) Let G[X,Y ] be a bipartite graph.
This graph has a matching, matching all vertices of X if and only if

∀S ⊆ X : |N(S)| ≥ |S|.
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Proof. ⇒: Let S ⊆ X and M a maximum matching. Because all vertices of S
are matched in M , we must have |N(S)| ≥ |S| as desired.
⇐: Suppose that ∀S ⊆ X : |N(S)| ≥ |S|, but that it was not possible to

match all vertices of X. Let M∗ be a maximum matching. Then |M∗| < |X|.
Let u ∈ X be a non-matched vertex. Let

Z := {v ∈ V (G) : ∃M∗-alternating path from u to v}.

Let R := Z ∩X and B := Z ∩ Y . Every vertex in R \ {u} is matched in M∗

to a vertex of B. Moreover, every vertex in B is matched in M∗ to a vertex
of R (if some vertex v ∈ B was not matched, there would be an augmenting
path from u to v leading to a matching with more edges than |M∗| according
to Berge’s theorem. That would be a contradiction). Therefore |B| = |R| − 1.
By the definition of Z we also have that N(R) = B. We conclude |N(R)| =
|B| = |R| − 1 < |R| contradicting ∀S ⊆ X : |N(S)| ≥ |S|. 2

1.3 Augmenting path search

We are again considering a graph G and want to find a maximum matching.
Suppose we have some matching M in G. Our goal will be to

• find an M -augmenting path

• or prove that none exists.

This is desirable since if we find an M -augmenting path P , then the matching
M can be improved by letting M := M4P . Conversely, Berge’s Theorem 1.2.3
says that if no augmenting path exist then M is maximum. Thus we want
to search for an augmenting path i.e. do an “Augmenting Path Search”. The
search starts at some vertex u and our first objective is to find an M -augmenting
path starting here (although we do not always succeed). During the search, we
build up an M -alternating tree with root u:

Definition 1.3.1 Let G = (V,E) be a graph, M a matching in G and u ∈ V .
A subtree T of G rooted at u satisfying:

∀v ∈ T : uTv is M -alternating4

is called an M -alternating u-tree. The M -alternating tree is called M -covered
if every vertex other than u is covered by an edge in M ∩ T .

Example 1.3.2 In Figure 2, deleting any of the edges in the three-cycle, we
obtain an M -alternating u-tree for any choice of u and M being the bold edges.
Choosing u as the M -uncovered vertex, two of the three trees are M -covered.

4Notation: If T is a tree with vertices u and v then uTv denotes the unique path from u to
v in T . We later see an expression uTxey where e is an edge between x ∈ V (T ) and y. This
denotes the path in T between u and x, concatenated with the edge e, giving a path ending
at y.
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Figure 3: A run of the APS Algorithm 1.3.3 where an M -augmenting path of
length 5 from u to y is found while we build up a pink M -alternating u-tree.

Let u be an M -uncovered vertex. The idea now is to start with the empty
M -alternating tree with root u and expand it as we search for an augmenting
path starting at u, see Figure 3. We colour the tree such that every vertex with
an even distance in T to u is red and every vertex with an odd distance is blue.

We want to find

• (preferably) an M -augmenting path

• or a maximal M -covered u-tree.

By a maximal M -covered u-tree we mean a tree that cannot be grown further an
still by an M -covered u-tree. In some cases (for example the bipartite case) the
maximal tree will help us argue about non-existence of M -augmenting paths.

Algorithm 1.3.3 (Augmenting Path Search) 5

Input: A graph G with a matching M and an unmatched vertex u ∈ V (G).
Output: An M -augmenting path in G or a maximal M -covered u-tree in G

• Let T be the tree with only one vertex u and no edges.

• Red := {u}, Blue := ∅.

• while(∃x ∈ Red and e = (x, y) ∈ E(G) : y 6∈ V (T ))

– If y is not M -covered

∗ Return the M -augmenting path uTxey.

else

∗ Let e′ = (y, z) be an edge in M .

∗ Add y, z, e and e′ to T .

∗ Blue := Blue ∪ {y}.
∗ Red := Red ∪ {z}.

• Return T .

5About “return” statements: In our notation reaching a “return” statement also implies
that the algorithm stops. That is, if in some iteration of the loop the first if-statement is
satisfied, the algorithm is interrupted after a (single) M -augmenting path is returned.
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Proof. The while condition checks if T is a maximal M -alternating tree in G.
If the tree can be extended with a single unmatched vertex y (and edge), the
desired M -augmenting path can be returned. If not, we can grow the tree. The
only thing to observe in the second step is that z is not already in the tree,
since all vertices of T (except u which is not M -covered) are already matched
by another vertex of the tree, but z is matched y which is not in the tree. The
algorithm terminates because T grows in each iteration and G is finite. 2

Exercise 1.3.4 What is “a polynomial time algorithm”? Argue that Algo-
rithm 1.3.3 is a polynomial time algorithm.

Remark 1.3.5 Every u-tree implicitly carries a colouring of its vertices. Namely,
u is coloured red and all other vertices are alternatingly coloured blue and red
by starting from the root and going towards the leaves.

The following proposition enables us to argue about non-existence of M -
augmenting paths.

Proposition 1.3.6 Let u ∈ V (G) be uncovered (unmatched) by M . If G has
a maximal M -covered u-tree T such that

• no red vertices are adjacent in G to a vertex in V (G) \ V (T )

• and no two red vertices of T are adjacent in G

then G has no M -augmenting path containing a vertex from T .

Proof. Suppose an M -augmenting path P in G existed and that it contained
some vertex from T .

• Some vertex v 6= u must be involved in both V (P )∩V (T ). ( Because u is
not covered by M , u is an end of P . By the first assumption the vertex
after u in P is also in V (T ).)

• Because T is alternating, v is covered by an edge e ∈M ∩ E(T ).

• Let’s follow P starting at e going down the tree.

• If P branches off T , it must happen at a red vertex. (The edge in P
following a blue vertex b must be the edge from M covering b in T .)

• Suppose P leaves T at a red vertex x ∈ T to a vertex y. Then y must
be in some other part of the tree (by the first assumption) and y must be
blue (by the second assumption). The blue vertex y cannot be the end of
the augmenting path since it is M -covered. The edge following y in P is
M -covered and y is matched with a red vertex in T . Therefore the path
must follow the tree (away from the root) from y to its next vertex.

• Continuing this way we follow P and see that P has no chance of reaching
its end. This is a contradiction since P is finite.

We conclude that no such augmenting path exists. 2
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Figure 4: The graph G in Example 1.3.7 with its matching M , a maximal
M -covered tree in G, and an augmenting path.

For simplicity we may call a maximal M -covered u-tree (rooted at an M -
uncovered vertex) computed by the APS Algorithm 1.3.3 an APS-tree. An
APS-tree does not always satisfy the second assumption of Proposition 1.3.6
above. That makes it difficult to use the tree as the following example shows.

Example 1.3.7 Consider the graph G shown to the left in Figure 4 with an
associated matching M and an M -uncovered vertex u (shown on the top of the
figure). If we compute an APS-tree using Algorithm 1.3.3 starting at u, we may
get the tree T in the middle of the figure. This tree does not satisfy the second
assumption of Proposition 1.3.6. Moreover, the matching number of α′(G) is 3.
An augmenting path is shown to the right.

However, if G is bipartite, then the two assumptions in the Proposition are
satisfied for the Augmenting Path Search output and we have:

Corollary 1.3.8 Let G be a bipartite graph and M a matching and u a vertex
not covered by M . If Algorithm 1.3.3 produces a tree T (that is, it does not
produce an augmenting path) then there exists no augmenting path containing
any vertex from T .

Proof. Because the algorithm only returns T when the “while” condition fails,
the tree T must satisfy the first condition of Proposition 1.3.6. Because the
graph is bipartite, the second condition is also met. The conclusion follows. 2

To find a maximum matching in a bipartite graph we could, of course, start
with M = ∅ and then apply the APS Algorithm 1.3.3 and the corollary for all
M -uncovered vertices u. Either we conclude that no M -augmenting path exists
- showing that M is maximum - or we find an M -augmenting P and do the
“M := M4P” operation to improve the matching. Repeating this process we
will end with a maximum matching. However, if we have already once found a
maximal M -alternating tree T rooted at u, we can avoid considering all vertices
involved in T again later in the computation. This is explained by the recursive
procedure below.

Algorithm 1.3.9 (Egerváry’s Algorithm) 6

Input: A bipartite graph G[L,R] with some matching M .
Output: A maximum matching M∗ and minimum covering X∗ of G.

6The ideas of Algorithm 1.3.9 can be implemented more efficiently as the Hopcroft-Karp
Algorithm, which performs better in theory and practise.
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• If E(G) = ∅ then return (M∗, X∗) := (∅, ∅).

• While(there exists an M -uncovered vertex u ∈ V (G) and Algorithm 1.3.3
run on (G,M, u) produces an augmenting path P )

– M := M4P .

• If G has no M -uncovered vertex, return (M∗, X∗) := (M,L).

• Let T be the tree produced by Algorithm 1.3.3 and B its blue vertices.

• Let G′ = G \ T and M ′ = M \ T

• Recursively produce a maximum matching M ′′ and minimum covering X ′′

of G′ by calling Egerváry’s algorithm on (G′,M ′).

• Return (M∗, X∗) := ((T ∩M) ∪M ′′, X ′′ ∪B).

Before reading the proof, try to read Example 1.3.10 and do Exercise 1.3.11
below.

Proof. Since the graph is finite, the while-loop cannot go on forever. There-
fore T will be produced with at least one vertex. When calling recursively, it
therefore happens on a graph with fewer vertices. This proves termination.

Notice that assuming |M ′′| = |X ′′| we get |(T ∩M) ∪M ′′| = |(T ∩M)| +
|M ′′| = |B|+ |X ′′| = |B ∪X ′′|. Therefore the algorithm always produces a pair
(M∗, X∗) with |M∗| = |X∗|.

We claim that the produced M∗ is a matching. This follows from M ′′ being
a subset of the edges of G \ T .

Notice that inG there cannot be any edges between vertices from red vertices
of T to vertices from G\T (this follows from the proof of Corollary 1.3.8 as the
proof of the first condition of Proposition 1.3.6). Therefore vertices of B cover
all edges incident to vertices of T . Finally, the edges of G \ T are covered by
X ′′. Therefore X∗ = B ∪X ′′ covers G.

By Lemma 1.2.11 any matching has size at most |X∗|. Because |M∗| =
|X∗| we get that M∗ is maximum and therefore |M∗| = α′(G). Similarly, by
Lemma 1.2.11 any covering has size at least |M∗|. Because |X∗| = |M∗| we get
that X∗ is minimum and therefore |X∗| = β(G). 2

Example 1.3.10 Consider the graph G in Figure 5 with a matching M of
size 2. The APS algorithm might give us the maximal M -covered tree T in
the second picture. By Proposition 1.3.6, taking symmetric difference with M -
augmenting paths cannot affect T . Therefore we may ignore T when searching
for augmenting paths and restrict to the graph G \ T shown to the right.

Notice that no red vertex is connected to a vertex of G \ T . Therefore a
covering of G \ T together with the blue vertices is a covering of G. Finding a
maximal matching M ′′ in G \ T with the same size as its minimal covering, we
get a matching (M ∩ T ) ∪M ′′ of G.
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Figure 5: The graph G in Example 1.3.10 with its matching M , a maximal
M -covered tree T in G, and the graph G \ T .

Exercise 1.3.11 Run Algorithm 1.3.9 on the graph G in Figure 5, starting
with M = ∅ and choosing u to be the first vertex in the first iteration, the third
vertex in the second iteration, and the second vertex in the third iteration. In
the recursive call choose u to be the fourth vertex (from the upper left). What
is the computed minimum covering for G?

Remark 1.3.12 According to the proof of Algorithm 1.3.9, the algorithm al-
ways produces a matching and a covering of the same size. Hence we now have
an alternative proof of Theorem 1.2.14, which we first proved in Exercise 1.2.19.

Exercise 1.3.13 Is Algorithm 1.3.9 a polynomial time algorithm?

1.4 Matchings in general graphs

In this section we aim at finding maximum matchings in general (non-bipartite)
graphs.

Exercise 1.4.1 Is the incidence matrix of a (not necessarily bipartite) graph
always totally unimodular? Can you find a graph G where the LP relaxation of
the Integer Linear Program of Exercise 1.2.15 does not have an optimal solution
in N|E(G)|?

The exercise shows that for general graphs we cannot just solve the Integer
Linear program by considering the relaxation. However, a theorem by Edmonds
(which we might see later) tells us which linear inequalities to add to the ILP
to make the feasible region of the LP relaxation a lattice polytope.

1.4.1 Certificates

For a graph G with a matching M , if we can find a covering with X with |X| =
|M |, then Proposition 1.2.12 implies that α′(G) ≥ |M | = |X| ≥ β(G) ≥ α′(G).
This shows that the matching is maximum and the covering is minimum.

For a bipartite graph the König-Egerváry Theorem states that the match-
ing number α′(G) equals the covering number β(G). In particular if we have
a maximum matching M , there will always exist a covering X of the same
size proving that M is maximum. Such a proof X we also call a certificate.
Egerváry’s Algorithm 1.3.9 produces a certificate for the found matching being
maximum.
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S

Figure 6: How the vertices of a graph G are split into three categories for a
chosen subset of vertices S, being the 9 vertices on the top.

Example 1.4.2 The complete graph K3 on three vertices with edges e1, . . . , e3

has α′(K3) = 1 < 2 = β(K3). This proves that the maximum matching M =
{e1} has no certificate in form of a covering because such a covering will have
size at least 2. That no certificate exists can happen because K3 is not bipartite.

The example shows that we need another kind of certificate when the graph
is not known to be bipartite.

Let a graph G with a matching M be given. Define U ⊆ V (G) to be the
set of vertices not covered by M . Let S ⊆ V (G) be any vertex subset. We
now imagine drawing the graph as in Figure 6. There the vertices of G have
been arranged into three categories: vertices in S, vertices belonging to odd
components of G \ S and vertices belonging to even components of G \ S.

Each odd component must have one vertex not covered by M — or rather
that is unless that vertex was matched with a vertex in S. At most |S| odd
components can be “saved” in this way. Therefore

|U | ≥ o(G \ S)− |S| (1)

where o(H) for a graph H is the number of odd components of H.
For the graph in Figure 6 this bound is useless because the set S was chosen

too big. Luckily, we get a bound for every choice of subset. If S is chosen
cleverly it can be used to argue that a given matching is maximum.

Example 1.4.3 Consider the graph G in Figure 7 and some matching M with
corresponding uncovered vertex set U . Choosing S to be the center vertex,
Inequality 1 becomes

|U | ≥ o(G \ S)− |S| = 3− 1 = 2.

Hence for any matching M , there will always be two vertices that are not
covered by M . Therefore the size of a matching M is at most (10− 2)/2 = 4.

From the example we see that the lower bound on the number of uncovered
vertices can be turned into an upper bound on the size of a matching. In
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Figure 7: The graph of Example 1.4.3.

particular, if we for our matching M can find a set S ⊆ V (G) such that

|V (G)| − 2|M | = o(G \ S)− |S|. (2)

then we know that M is maximum. A set S ⊆ V (G) is called a barrier if there
exists a matching M such that Equation 2 is satisfied. A barrier can be used as
a certificate, proving that a given maximum matching M is indeed maximum.

Exercise 1.4.4 What is a barrier for the 4-vertex graph consisting of a path
of length 2 (with three vertices) and an isolated vertex?

Exercise 1.4.5 Find a barrier for the graph in Figure 5. Prove that every
bipartite graph has a barrier.

That every graph has a barrier can be proved by a version of Edmond’s Blossom
Algorithm 1.4.8.

1.4.2 Edmonds’ Blossom Algorithm

Recall that the problem with having a non-bipartite graph is that the augment-
ing path search (Algorithm 1.3.3) might, as in Example 1.3.7, return a tree with
two adjacent red vertices. Consequently, Proposition 1.3.6 cannot be applied
and we cannot exclude the existence of an augmenting path.

Let T be a M -covered u-tree coloured red and blue according to the con-
ventions for the augmenting path search. Let x and y be two red vertices both
incident to an edge e. The graph T ∪ {e} has a unique cycle C. This cycle has
odd length and is called a blossom. Every vertex of C except one is covered by
M ∩ E(xTy).7 Let r denote this uncovered vertex.

The idea of Edmonds’ blossom algorithm is to let the Augmenting Path
Search detect (when colouring red) adjacent red vertices in the tree. When such
a pair of vertices is detected, the APS algorithm will be terminated, returning a
blossom C. The algorithm proceeds searching for an augmenting path in G/C.8

7By xTy we mean the unique path in the tree T with ends x and y.
8Recall that a for a loop-less graph G and a set S ⊆ V (G), the contracted graph G/S

is obtained by replacing all vertices of S by a single new vertex. We say that the vertices
are identified. The edge set remains the same, except that possible loops are removed. The
notation G/S is not to be confused with G \S (where the vertices of S are completely deleted
from the graph).
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Figure 8: The situation in the last paragraph of the proof of Lemma 1.4.6.

If an augmenting path P is found in G/C, then that path can be lifted to
an augmenting path P ′ of G. Hence the matching can be improved by forming
M4P ′.

When identifying V (C) we give the new vertex the name R. A matching M
in G induces a matching in G/C with (|C| − 1)/2 fewer edges. This matching
we also denote by M . Note also that a blossom is not just an alternating cycle
of odd length - for the proof of Lemma 1.4.7 below it is important that r ∈ G
is connected to some uncovered vertex (u) by an alternating path.

Lemma 1.4.6 Let G be a graph with a matching M . Let u be an M -uncovered
vertex and T an M -alternating u-tree. Let C be a blossom with (E(C) ∩M)-
uncovered vertex r. If G/C has an augmenting path P then G also has an
augmenting path.

Proof. If R 6∈ V (P ), then P is M -augmenting in G.
If P in G/C ends in R with the last edge being e = (a,R), then there must

be an edge e′ = (a, s) 6∈M where s ∈ C. In C there is an alternating (s, r)-path
Q starting with an edge in M . Because R is not M -covered in G/C, r is not
M -covered in G. Therefore PsQr is augmenting in G.

If P in G/C passes through R, then some edge e ∈ M is incident to r in
G. Let e′ 6∈ M be the other edge in P incident to R in G/C. Starting in C at
the end a of e′ in G there is an alternating path Q from a to r starting with
an edge of M . The concatenated path p1PaQrPp2 is now M -augmenting in G,
where p1 and p2 are the ends of P . (See Figure 8.) 2

The following lemma is more tricky. We somehow need to argue that even
if we for example collapse an edge in M from an augmenting path P in G when
going from G to G/C, an augmenting path in G/C can still be found.

Lemma 1.4.7 Let G be a graph with a matching M . Let u be an M -uncovered
vertex and T an M -alternating u-tree. Let C be a blossom with (E(xTy)∩M)-
uncovered vertex r. If G has an augmenting path P then G/C also has an
augmenting path.

19



Proof. If V (P ) ∩ V (C) = ∅ then we can just take the same path in G/C.
Therefore we now assume that V (P ) ∩ V (C) 6= ∅. Clearly, P cannot be

contained in C because P has two M -uncovered vertices. Let Q be the subpath
of P starting at one end of P until C is reached. That is, Q has exactly one
vertex in V (C).

If r = u then r is not covered and there is no e ∈M going into C. Hence the
last edge of Q is not in M . Since the new vertex R in G/C is not M -covered,
Q is M -alternating in G/C.

If r 6= u, let S := uTr. We now apply Berge’s Theorem 1.2.3 four times.
First, by this theorem the existence of an M -augmenting path in G implies
that M is not a maximum matching. Because |S4M | = |M |, also S4P is not
maximum. By Berge’s Theorem G has an S4M -augmenting path. For the
matching S4M we could start the APS algorithm at the uncovered vertex r
and obtain again the blossom C. The argument of the r = u case therefore
implies that G/C has an S4M -augmenting path. By Berge Theorem, S4M is
not maximum in G/C. Because M and S4M have the same size as matchings
in G/C, M is not maximum in G/C. By Berge Theorem, the desired M -
augmenting path in G/C exists. 2

Algorithm 1.4.8 (Edmonds’ Blossom Algorithm)
Input: A graph G with some matching M .
Output: An M -augmenting path in G. Or, if M is maximum, output ∅.

• If all vertices V (G) are M -covered, then return ∅.

• Choose an M -uncovered vertex u ∈ V (G).

• Call the Augmenting Path Search (Algorithm 1.3.3) on G and u.

• There are now three cases:

– If APS found an augmenting path, then return it.

– If APS produced an M -covered u-tree T with two red vertices adjacent
in G, then

∗ Choose two adjacent two red vertices and let C denote the asso-
ciated blossom.

∗ Recursively9 try to compute an M -augmenting path in G/C.

∗ If successful, lift the path to an M -augmenting path in G fol-
lowing the construction in the proof of Lemma 1.4.6 and return
it.

∗ If unsuccessful, return ∅.
– If there are no red vertices in T being adjacent in G then

∗ Let G′ = G \ T and M ′ = M \ T
∗ Recursively compute an M ′-augmenting path in G′

∗ If successful return the path.

9An algorithm is called recursive if it calls itself. When we write “recursively compute” we
mean do the smaller computation with the algorithm itself.
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G \ T
T

S ′

Figure 9: Figure showing how a the barrier of the smaller graph is combined
with the blue vertices of the bigger graph to produce a barrier for the bigger
graph as explained in the last step of the proof of Algorithm 1.4.8.

∗ If unsuccessful, return ∅.

Ideally the algorithm should should return a barrier as a certificate of optimality
of the matching. Unfortunately our version does not.

Proof. We first observe that the algorithm terminates because the recursive
calls are always done on graphs with fewer vertices.

We will recursive/inductively prove correctness.There are three cases to con-
sider:

• In the base case, where there are no uncovered vertices, it is correct not
to return a path.

• If an augmenting path is found it is correct to return it.

• If no adjacent red vertices exist, then Proposition 1.3.6 says that it is
correct to restrict the search to the complement of T .

• If a blossom was found, then Lemma 1.4.6 and Lemma 1.4.7 tell us that
it is correct to look for an augmenting path in G/C.

2

Remark 1.4.9 In the spirit of Berge’s Theorem 1.2.3 we may, similarly to
Egerváry’s Algorithm 1.3.9, start with some matching M in a graph G, and
enlarge it by taking symmetric difference M := M4P repeatedly where P is
an M -augmenting path found by the blossom algorithm.

Exercise 1.4.10 Use Edmonds’ Blossom shrinking Algorithm 1.4.8 to find a
maximum matching (and a barrier?) for the two graphs in Figure 10.

Exercise 1.4.11 Prove that Edmonds’ Blossom Algorithm (Algorithm 1.4.8)
is a polynomial time algorithm.
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Figure 10: The graphs in Exercise 1.4.10.

Exercise 1.4.12 Can we prove Lemma 1.4.7 using the algorithm? (That is,
can we change the proof of correctness, so that it does not rely on Lemma 1.4.7?)

Remark 1.4.13 Notice that we may change the APS algorithm so that it
returns a (not necessarily maximal) covered tree as soon as two adjacent red
vertices are discovered. This will speed up the computation in Algorithm 1.4.8.

Exercise 1.4.14 A naive way to compute a maximum matching is to apply
Algorithm 1.4.8 repeatedly. By changing the algorithm, it is be possible to
avoid computing the same maximal covered trees repeatedly. How?

1.5 Maximum weight matching in bipartite graphs

We now let G[X,Y ] be a bipartite graph with a weight function w : E → R.
The weight of a matching M (or any other subgraph of G) is defined as w(M) =∑

e∈M w(e). We will see how the idea from Egervary’s algorithm can be used
to find matchings in G with largest weight.

We first discuss the case where G is a complete bipartite graph and we want
a maximal weight perfect matching.10

The algorithm below computes iteratively a matching M1 in G of size 1
with largest weight, a matching M2 of size 2 and so on until the maximum
w-weight perfect matching is found. In this process it is possible to go from
Mi−1 to Mi by taking the symmetric difference with an augmenting path. This
is a consequence of Lemma 1.5.2 below.

We first introduce some notation. For a matching M we define the directed
graph GM to be G with the edges orientation from X to Y , with the exception
that edges of M are oriented from Y to X. We define the weight function wM

on GM by letting wM (e) = w(e) if e ∈M and wM (e) = −w(e) otherwise.

Example 1.5.1 Consider G = K2,2 with weights as in Figure 11. A maximal
weight matching M1 of size 1 is shown in the second picture. From this the
graph GM1 with weights wM1 is formed. In the fourth picture a max-weight

10In general a bipartite graph G[X,Y ] is complete if any two vertices x ∈ X and y ∈ Y are
adjacent. We use the notation Kr,s to denote the complete bipartite graph with bipartition
(X,Y ) where |X| = r and |Y | = s (and there are no parallel edges).
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Figure 11: The graph of Example 1.5.1. The pictures show G with weights w,
M1, GM1 with weights wM1 , P1 and M2, respectively.

path P1 from an M1-uncovered vertex in X to an M1-uncovered vertex in Y
is shown. Taking symmetric difference M2 := M14P1 we get the max-weight
perfect matching M2.

Observe that
w(M4P ) = wM (P ) + w(M). (3)

Lemma 1.5.2 Let M be a matching in G with |M | = d. Suppose M has
maximal w-weight among all matchings of size d. Let M ′ be a matching with
|M ′| = d+ 1 Then there exists an M -augmenting path P in G such that M4P
has size d+ 1 and w(M4P ) ≥ w(M ′).

Proof. Because the degree of any vertex in the subgraphs M and M ′ of G is
at most 1, the symmetric difference M4M ′ has only vertices with degree at
most two. The edge set E(M4M ′) is therefore a disjoint union of cycles and
paths. Since |M | < |M ′| one component P of M4M ′ contains more edges from
M ′ than from M . Because P is M and M ′-alternating it cannot be a cycle.
Because P contains more edges from M ′ than from M it is a path of odd length.
Moreover, the ends of P are not M -covered. (If they were, the component of
M4M ′ containing P would be larger than P .) Notice that wM (P ) = −wM ′(P )
because M and M ′ involve opposite edges along P . Now

w(M ′) = w(M ′4P )−wM ′(P ) ≤ w(M)−wM ′(P ) = w(M)+wM (P ) = w(M4P ).

The first and last equality follow from Equation 3 above. The inequality follows
because M has maximal weight among all matchings of its size – in particular
it has w-weight greater than M ′4P . 2

Algorithm 1.5.3 (Hungarian Algorithm)
Input: A complete bipartite graph G[X,Y ] = KD,D

11 and a weight function w.
Output: A perfect matching M in G with w(M) maximal.

• Let M = ∅.

• While |M | 6= |X|

– Form the graph GM with weight function wM described above.

11Recall that KD,D is the complete bipartite graph G[X,Y ] on 2×D vertices, meaning that
|X| = |Y | = D and any two vertices x ∈ X and y ∈ Y form an edge (x, y).
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– Find a maximum wM -weight directed path P in GM from an uncov-
ered vertex of X to an uncovered vertex of Y .

– Let M := M4P .

• Return M

Proof. The algorithm terminates because M increases by 1 every time the sym-
metric difference with the M -augmenting path P is taken.

To prove correctness, we prove by induction that the following claim holds:

Si: After each the ith iteration, M has maximal possible w-weight among all
matchings of size i

Base case i = 0: After 0 iterations, M = ∅. This is the only matching of size 0
and therefore the statement S0 is satisfied.

Induction step: Suppose Si−1 is true. We wish to prove Si. By Lemma 1.5.2
there exists some M -augmenting path P such that w(M4P ) is maximal among
weights of all matchings of size i = |M | + 1. Because w(M4P ) = w(M) +
wM (P ) for every M -augmenting P , we can simply choose an M -augmenting
path P from X to Y such that wM (P ) is maximal. Now w(M4P ) is maximal
of size i. Therefore Si is true.

By induction we get that Si is true for all i ≤ |X|. In particular for i = |X|
we get that w(M) is maximal among the weights of all perfect matchings. 2

Example 1.5.4 Consider the graph K3,3 with the weighting w given in Fig-
ure 12. In three iterations the max-weight matching M3 is computed. The
values of GM , wM and P are shown at each iteration to the right of the figure.
At the last step, there actually are two choices of P2 both with weight 2. We
choose one of them.

We end this section with an observation that will be useful later:

Lemma 1.5.5 In Algorithm 1.5.3, the graph GM with weighting wM does not
have any directed cycle with positive weight.

Proof. Suppose such a cycle C did exists. Then consider M4C, which is a
matching of the same size as M . We have w(M4C) = w(M)+wM (C) > w(M).
This contradicts M having largest w-weight among matchings of its size. 2

Exercise 1.5.6 Let a ∈ N and Kd,d have weights given by a weight function w.
How would you compute a matching of maximum weight among all matchings
of size a?

Exercise 1.5.7 How do we find the maximum weight (not necessarily perfect)
matching in a complete bipartite graph Kd,d?

Exercise 1.5.8 How do we find the maximum weight matching in a bipartite
graph (not necessarily complete)?
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Figure 12: The graph of Example 1.5.4 with the values of M , GM , wM and P
through a run of the Hungarian Algorithm 1.5.3.

Exercise 1.5.9 Let a bipartite graph with weights be given. (Let’s just assume
the weights are non-negative). Among all matchings of largest size, how do we
find the one with largest weight?

Exercise 1.5.10 The Hungarian method has many disguises. Actually, the
way it is presented here is not typical. For a different presentation watch the
video:

http://www.wikihow.com/Use-the-Hungarian-Algorithm

Find a minimum weight perfect matching for the example in that video using
Algorithm 1.5.3. Find a maximum weight perfect matching of Example 1.5.4
using the algorithm of the video. (Which theorem was used at 2:35?)

The two descriptions are not identical, and it is not obvious that they are
more or less the same. An explanation why it is fair to also call Algorithm 1.5.3
the “Hungarian method” is given in [7, end of Chapter 8].

1.6 Distances in graphs (parts of this section are skipped)

Motivated by Algorithm 1.5.3 (and in particular the K4,4 example in Exer-
cise 1.5.10) we need a method for computing longest/shortest paths in a graph
between two sets of vertices. We will assume that our graphs are directed.

From the course Mathematical Programming we know Dijkstra’s algorithm.
What was known as weights in Section 1.5 is now called lengths or distances.
Dijkstra’s algorithm computes the shortest distance between two given vertices
in a graph with edges of positive length:
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Figure 13: Dijkstra’s Algorithm will fail on this graph. Starting at s, the
algorithm first finds the distance 3 to the upper vertex and thereafter concludes
that the distance to t is 2. Only later when the edge with length 5 has been
processed it realises that t is actually reachable from s with a distance of 1.
Had the graph been bigger Dijkstra’s algorithm might have used that the false
(s, t)-distance 2 for other parts of the graph. Correcting previously computed
distances is complicated and is not part of Dijkstra’s algorithm.
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Figure 14: Suppose we want to apply the Hungarian method to find the max-
weight matching on the graph on the left, where the pink edges have weight
0. In the first step, the augmenting path consisting of the edge with weight
7 is chosen. Now we want to find a longest path in GM1 with weights wM1 .
Or using Dijkstra’s algorithm, find the shortest path from the left vertex to
the right vertex in the graph to the right. For the same reason as in Figure 13,
Dijkstra’s algorithm will reach the conclusion that the shortest path is of length
−3, when really it is of length −5.

Algorithm 1.6.1 Dijkstra’s Algorithm
Input: A directed graph G with a distance function w : E(G)→ R≥0 and two
vertices s and t ∈ V (G).
Output: An (s, t)-path P with the property that w(E(P )) is a small as possible.

(A more general version of Dijkstra’s algorithm takes only one vertex s as input.
Distances and shortest paths from s to all other vertices would be returned.)

The problem with having negative weights is illustrated by Figure 13. This
problem persists even when the weights satisfy Lemma 1.5.5 as we now show.
To solve the problem of finding a largest w-weighted path in Algorithm 1.5.3,
extend GM to a graph G′ with new vertices s and t and connected s to all M -
uncovered vertices of X and all M -uncovered vertices to t via directed edges.
The distances of G′ we set to −wM because we are interested in largest wM -
weighted paths. The additionally introduced edges get length 0. In Figure 14
we apply Dijkstra’s Algorithm to the problem, and get the wrong result.

It is not clear if it is possible to repair Dijkstra’s Algorithm to also work with
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Figure 15: The graphs of Example 1.6.2.

negative weights. In the following subsections discuss how shortest distances in
directed graphs can be computed even when weights are negative.

1.6.1 Warshall’s Algorithm

If there is no directed (x, y)-path between two vertices x and y in a directed
graph G, we say that their distance is ∞. A first step to computing the vertex-
vertex distances in a weighted graph would be to figure out which vertices are
not reachable from each other. We want to compute the transitive closure of G
which we now define.

Directed graphs with vertex set V without parallel arcs are in bijection to
relations on V . Namely, let G be a directed graph with no parallel edges. Such
a graph gives rise to the relation:

u ∼G v ⇔ (u, v) ∈ E(G)

for u, v ∈ V (G). The relation ∼G is called transitive if for u, v, w ∈ V (G):

u ∼G v ∧ v ∼G w ⇒ u ∼G w

Given a graph G with not parallel edges, its transitive closure is the smallest
graph G∗ containing G such that ∼G∗ is transitive.

Example 1.6.2 Consider the graph G on the left in Figure 15. The transitive
G∗ is shown on the right. After having chosen an ordering on the vertices, we
can write the their adjacency matrices. The adjacency matrices for G and G∗

are respectively: 
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0

 and


0 1 1 1
0 0 1 1
0 0 1 1
0 0 1 1

 .

Lemma 1.6.3 An arc (u, v) is in the transitive closure G∗ if and only if there
is a directed (u, v)-walk in G of length at least one.

Proof. Define

K := {(u, v) : ∃ directed (u, v)-walk in G of length at least 1}.
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i

Figure 16: If vertices i, j and k are found in Warshall’s Algorithm such that
the edge (j, i) and the (i, k) is present, the new edge (j, k) is introduced.

We first prove K ⊆ E(G∗). Let P be a (u, v)-walk in G of length at least
one. Let u0, . . . , ul = v be the vertices of P . We have (u0, u1) ∈ E(G∗) and
(u1, u2) ∈ E(G∗). Hence (u0, u2) ∈ E(G∗). Because (u2, u3) ∈ E(G∗) also
(u0, u3) ∈ E(G∗). Eventually this proves (u, v) ∈ E(G∗).

Now we prove E(G∗) ⊆ K. It is clear that E(G) ⊆ K. Notice that the rela-
tion on V induced by K is transitive. Since G∗ is the smallest graph containing
G with ∼G∗ transitive, E(G∗) ⊆ K. 2

Warshall’s algorithm, which we now present, computes the transitive closure
by observing that if (u, v) and (v, w) are edges in the transitive closure, then
so are (u,w). Therefore the algorithm starts with the graph G (which is a
subgraph of the transitive closure of G) and expands it to the transitive closure
by looking for the pattern in Figure 16. When no such pattern can be found,
we have reached the transitive closure. The algorithm is a bit more clever than
this - it does not have to restart its search for the pattern after a new edge has
been inserted. For convenience, we use names 1, 2, . . . , |V | for the vertices of G.

Algorithm 1.6.4 Warshall’s Algorithm
Input: The adjacency matrix M for graph G.
Output: The adjacency matrix M ′ for the transitive closure G∗.

• Let M ′ = M .

• For i = 1, 2, . . . , |V |

– For j = 1, 2, . . . , |V |
∗ If (M ′ji = 1)

· For k = 1, 2, . . . , |V |
. If(M ′ik = 1) then let M ′jk := 1.

Proof. Since |V | is constant, the algorithm clearly terminates.
To prove correctness, let G0 = G and let Gi be the graph represented by

M ′ after the ith iteration of the outer loop.
Clearly we have G = G0 ⊆ G1 ⊆ · · · ⊆ G|V | ⊆ G∗ where the last inclusion

follows because we only ever add edges which must be in the transitive closure.
To prove that G|V | ⊇ G∗, we prove the statement S0, . . . , S|V | by induction:

Si: For (s, t) ∈ V × V , if there is an (s, t)-walk of length at least 1 with all
vertices except s and t being among the i first vertices, then (s, t) ∈ E(Gi).
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In the base case i = 0, the statement Si is that if there is a (s, t)-walk in G
involving no other vertices then s and t, then (s, t) ∈ G0 = G, which is clearly
true.

For the induction step, assume Si−1. We want to prove Si. Let P be
an (s, t)-walk of length at least 1 which does not involve other vertices than
s, t and the first i. If the ith vertex is not in V (P ) then Si−1 implies that
(s, t) ∈ E(Gi−1) ⊆ E(Gi). On the other hand, if vertex i is in V (P ), then we
have two cases. If i ∈ {s, t}, then there is an (s, t)-walk of length ≥ 1 involving
only s, t and vertices among the first i− 1. By Si−1, (s, t) ∈ E(Gi−1) ⊆ E(Gi).
If i 6∈ {s, t} then Si−1 and the existence of a subwalk sP i imply that (s, i) ∈
E(Gi−1). Similarly (i, t) ∈ E(Gi−1). It is in the ith iteration explicitly checked
if (s, i) ∈ E(Gi−1) and (i, t) ∈ E(Gi−1) (when j = s and k = t) and in that case
the edge (s, t) is added to Gi as desired. Therefore Si is true.

By induction Si is true for any i. In particular, when i = |V (G)| it gives
the inclusion G|V | ⊇ G∗, because by Lemma 1.6.3 (s, t) ∈ E(G∗) only if there
is an (s, t)-walk in G of length at least 1. 2

1.6.2 Bellman-Ford-Moore

We now present an algorithm which will produce the shortest distances in a
graph even when the weights are negative. We use the words length and weight
interchangeably. The only assumption is that the graph has no cycles of negative
length. Let d(u, v) denote the minimum w-weight of a directed (u, v)-walk in
G. If no such minimum exists we let d(u, v) = −∞ and if no walk exists we let
d(u, v) =∞. The following presentation has some resemblance to [11].

In the Bellman-Ford-Moore Algorithm a vertex s is special. We want to
find distance from it to all other vertices of G. The idea is to keep a list
λ ∈ (R ∪ {∞})|V | of smallest distances discovered so far. If at some point we
discover the arc (i, j) with λj > λi + w(i, j), then λj can be improved.

Algorithm 1.6.5 (Bellman-Ford-Moore)
Input: A directed graph G = (V,E) with possibly negative lengths w : E → R,
and s ∈ V . The graph G should contain no cycles of negative length.
Output: For every v ∈ V the shortest distance λv from s to v.

• λ := (∞, . . . ,∞, 0,∞, . . . ,∞) ∈ (R ∪ {∞})V with 0 being at position s.

• while(∃(i, j) ∈ E : λj > λi + w(i, j))

– Let λj := λi + w(i, j)

Before we prove termination and correctness of the algorithm, let us see
some examples.

Example 1.6.6 Consider the graph of Figure 17. The λ-values for one possible
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Figure 17: The graph in Example 1.6.6.
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Figure 18: The graph in Example 1.6.7.

run of the algorithm are:

λ = (0,∞,∞)

λ = (0,∞, 3)

λ = (0, 1, 3)

λ = (0, 1, 2).

Example 1.6.7 If the graph contains a cycle with negative length, the Bellman-
Ford-Moore Algorithm might not terminate. Consider the graph in Figure 18.
We initialise λv = 0 and λx = λy = ∞. In the first iteration we let λx =
λv + 1 = 0 + 1 = 1. In the next iteration we let λy = λx + 1 = 2. In the third
λv = λy − 3 = −1. But now we can repeat forever.

Exercise 1.6.8 Consider the graph in Figure 19 with its weighting. Run the
Bellman-Ford-Moore Algorithm 1.6.5 on it. Prove that it is possible for the
algorithm to update the λ-value of the vertex furthest to the right 32 times in the
while-loop. Because of examples like this the Bellman-Ford-Moore algorithm is
an exponential time algorithm.

16

0

s

0000

8 4 2 1

Figure 19: The graph in Exercise 1.6.8.
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Lemma 1.6.9 Suppose G has no directed cycles of negative length (reachable
from s). At any time of the algorithm we have

λv 6=∞⇒ ∃ a directed path from s to v of length λv.

Proof. Find the edge (v′, v) leading to the assignment of value λv. Now find
the edge leading to the assignment of value λv′ and so on. We get

v, v′, v′′, v′′′, . . . , s.

It is not possible to have repeats in this list, because then G would have contain
a cycle of negative length. We conclude that

s, . . . , v′′′, v′′, v′, v

is the desired path. 2

Theorem 1.6.10 For a graph G with weights w : E(G) → R and no negative
cycles, Algorithm 1.6.5 will terminate in finitely many steps with λv = d(s, v)
for all v ∈ V .

Proof. To prove termination, we first notice that by Lemma 1.6.9 any value λv
in the algorithm is the length of some path in G. Because G has only finitely
many paths, λv can attain only finitely many values. However, in each iteration,
some λv value is lowered. Therefore the algorithm terminates.

When the algorithm has terminated, then λv ≥ d(s, v) because of the ex-
istence of the (s, v)-path constructed in Lemma 1.6.9 of length λv. Suppose
for contradiction that λv > d(s, v) for some v. Let s = v0, v1, . . . , vk = v be a
shortest path from s to v. Let i be the smallest i with λvi > d(s, vi). Then
consider the arc (vi−1, vi). We have

λvi > d(s, vi) = wi−1,i + d(s, vi−1) = wi−1,i + λvi−1 .

The first equality follows from v0, . . . , vk being a shortest path and the second
from i being minimal. But because the algorithm terminated, we cannot have

λvi > wi−1,i + λvi−1

because this is the condition of the while loop. This is a contradiction. We
conclude that λv = d(s, v). 2

Remark 1.6.11 Algorithm 1.6.5 can easily be modified so that it only per-
forms a polynomial number of steps. In particular the behaviour in Exer-
cise 1.6.8 will not appear. Simply order the edges e1, . . . , em, and always search
for the (i, j) edge in the algorithm by cyclically going through this list, starting
at the spot where the previous (i, j) edge was found. It can be proved that the
number of times it is required to cycle through the list is at most |V |. Therefore
the whole procedure takes time in the order of O(|V | · |E|).

By this remark we have solved the problem we set out to solve for the
Hungarian Algorithm 1.5.3, namely to find an efficient method for finding w-
maximal weighted augmenting paths from X to Y in GM with weighting wM .
Only one run of the Bellman-Ford-Moore Algorithm is required, if we add ad-
ditional vertices as in Figure 14.
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1.6.3 Floyd’s Algorithm

Even if it is not necessary for the Hungarian Algorithm 1.5.3, we now discuss
the problem of finding all shortest distances in a graph with edge weights. That
is we want to compute a matrix D ∈ (R∪ {∞})V×V with Du,v = d(u, v) for all
vertices u, v ∈ V . This matrix is called a distance matrix.

We have several possibilities:

• Run Dijkstra’s Algorithm 1.6.1 n times. That will take time O(|V |3), but
negative weights are not allowed.

• Run the Bellman-Ford-Moore Algorithm 1.6.5 n times. That will take
time O(|V |2|E|) which is often as bad as O(|V |4) if there are many edges.

• Run Floyd’s Algorithm 1.6.12 which we will now present. This will take
time O(|V |3).

The idea in Floyd’s Algorithm is to look for the pattern of Figure 16. But
unlike Warshall’s Algorithm 1.6.4 we this time check if the previously known
distance between j and k is larger than the shortest known distance between
j and i and the shortest known distance between i and k. We keep track of
the known short distances in the matrix Λ and update it in a way similar to
the updates of the adjacency matrix of Warshall’s Algorithm. To make things
simpler, we unlike Warshall’s Algorithm

Algorithm 1.6.12 Floyd’s Algorithm
Input: A directed graph G = (V,E) with a weight function w : E → R. The
graph G should contain no cycles of negative length.
Output: The distance matrix D of G.

• Let Λu,v :=


0 for (u, v) with u = v

w(u, v) for (u, v) ∈ E with u 6= v
∞ otherwise

• For i = 1, 2, . . . , |V |

– For j = 1, 2, . . . , |V |
∗ For k = 1, 2, . . . , |V |
· Let Λjk := min(Λjk,Λji + Λik).

• Return D := Λ.

In the algorithm we have ordered the vertices V so that they can be used to
index columns and rows of the matrix Λ. Moreover, for the initialisation of Λu,v,
if repeated (u, v) arcs exist, Λu,v should be the smallest w-value of those. The
ideas of the following proof are very similar to those of the proof of Warshall’s
Algorithm 1.6.4.

Exercise 1.6.13 If we have run Algorithm 1.6.12, how could we find a shortest
path given start and end vertices? Can this be done easier if we modify the
algorithm? How?
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Exercise 1.6.14 Are Floyd’s and Warshall’s algorithm the same for graphs
where all weights are 0?

Proof. Since |V | is constant, the algorithm clearly terminates.
To prove correctness, let Λi be the value of Λ after the ith iteration of the

outer loop. Clearly we have Λ0 ≥ Λ1 ≥ · · · ≥ Λ|V | ≥ D entry-wise, where the
last inequality follows because we only assign lengths to Λ if a walk of that
length indeed exists between the vertices in question.

To prove that Λ|V | ≤ D, we prove the statement S0, . . . , S|V | by induction:

Si: For (s, t) ∈ V × V , Λi
s,t is ≤ the w-length of a shortest (s, t)-walk in G

with all vertices except s and t being among the i first vertices.

In the base case i = 0, the statement Si is that if there is a (s, t)-walk in G
involving no other vertices than s and t then it has length ≥ Λs,t. This is true
either because s = t and Λs,t = 0 or because the walk has s 6= t and therefore
at least of length Λ0

s,t. (We have used that G has no cycles of negative length!)
We now prove Si−1 ⇒ Si. Suppose Si−1 is true. Notice that it suffices to

prove for any (s, t)-walk P only involving s, t, 1, . . . , i that

Λi
s,t ≤ w(P ).

• If vertex i is not involved in P then Si−1 implies w(P ) ≥ Λi−1
s,t ≥ Λi

s,t as
desired.

• If i is involved in P , then consider an (s, i)-subwalk Q1 of P and an (i, t)-
subwalk Q2 of P . We choose Q1 and Q2 to be such that they have a
minimal number of edges. Because G has no cycles of negative weight

w(P ) ≥ w(Q1) + w(Q2) ≥ Λi−1
s,i + Λi−1

i,t ≥ Λi
s,t.

The second inequality follows from Si−1 because the interior vertices of
Q1 and Q2 all have index at most i− 1. The last inequality follows from
the way that Λi

s,t gets its value in the assignment in the algorithm.

By induction Si is true for any i. In particular, when i = |V (G)| it gives
Λ|V | ≤ D. 2

1.7 Maximal weight matching in general graphs

We return to the situation of non-directed graphs and the problem of finding
maximal weight matchings. As motivation for the non-bipartite case we con-
sider the Chinese postman problem. Both this motivating example and and
the proof of Theorem 1.7.6 below require that we allow graphs to have parallel
edges. (Note that this does not cause problems even when applying Floyd’s
Algorithm 1.6.12 in Algorithm 1.7.2 below, as Floyd’s Algorithm can easily be
modified to deal with the parallel-arc situation.) Moreover, we will use the
notation G+H for the graph with vertex set V (G)∪V (H) and edge sets being
the union edges in G and H, but with edges repeated if they appear in both
E(G) and E(H). In particular |G+H| = |G|+ |H|.
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1.7.1 The Chinese postman problem

The following problem was studied by the Chinese mathematician Kwan:
We consider the street map of a town. The streets have lengths and the map

may be represented as a graph G = (V,E) with a weight function w : E → R≥0.
The post office is located at one of the vertices v in G. At the post office there
is a single postman working. He needs to deliver mail along each street on the
map (or edge in the graph). The streets are narrow and it is not necessarily
necessary to walk a long a street more than once. The problem is to find a
closed walk P starting and ending at the post office vertex v so that all edges
have been covered by P at least once and w(P ) is minimal. We will call such
walk an optimal postman tour. (A tour is the name for a closed walk covering
all edges at least once.)12

We will assume that the street map graph is connected. Recall (from Graph
Theory 1) that an Eulerian tour in a graph is a tour using each edge of the
graph exactly once. A graph is Eulerian if it has an Eulerian tour. This is the
case if and only if the graph is connected and all vertices have even degree. In
this case an Eulerian tour can then be found using Fleury’s Algorithm from
Graph Theory 1. Because we have assumed that all edges have non-negative
length, the Euler tour would be an optimal solution to the Chinese postman
problem. However, not every graph is Eulerian.

If G is not Eulerian, let U be the set of vertices with odd degree. These are
called odd vertices. A possible approach now is to add edges to G (introducing
parallel edges) so that G becomes Eulerian and then find an Eulerian tour.

Lemma 1.7.1 Given a connected graph G = (V,E) with weight function w :
E → R≥0 there exists a set of walks P1, . . . , Pk in G with the ends being odd
vertices in G (with each odd vertex being an end of one walk) such that adding
the walks to G by duplicating edges, the new graph G+P1 + · · ·+Pk is Eulerian
and each of its Euler tours (starting at v) is an optimal postman tour in G.

Proof. Let W be an optimal postman tour in G. Then W is an Eulerian tour
in a graph G′ where edges have been repeated in G so that W uses each edge
in G′ exactly once. Consider now the graph G′′ being G′, but with the original
edges of G removed. That is, G′′ contains the edges that were added to G to
make it even. The graphs G′′ and G have the same set of odd vertices U . It
is not difficult to decompose G′′ into |U |/2 walks P1, . . . , P|U |/2 and an even,
possibly empty, subgraph H: G′′ = P1 + · · · + P|U |/2 + H. (For example, find
P1 by starting a walk from an odd vertex until another odd vertex is reached.
If a vertex was visited more than once, then remove edges and vertices from P1

to make it a true path between two odd vertices of G′′. To find P2 consider G
with E(P1) removed, and so on. Eventually we are left with a subgraph with
only even vertices.) We now have

w(G′)−w(G) = w(G′′) = w(P1)+· · ·+w(P|U |/2)+w(H) ≥ w(P1)+· · ·+w(P|U |/2)

12Please be aware of the difference between a path and a walk when reading this. See Bondy
and Murty [1] for definitions.
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because the even subgraph H must have non-negative weight. This implies
w(P1) + · · · + w(P|U |/2) + w(G) ≤ w(G′) = w(W ). Because G with the paths
P1, . . . , P|U |/2 added is Eulerian and has weight at most w(W ) it has an Euler
tour being an optimal postman tour in G. 2

We notice that each Pi mentioned in the lemma must be a w-shortest walk
between the ends of Pi. (If P ′i was w-shorter, then the Eulerian graph G+P1 +
· · ·+Pi−1 +P ′i +Pi+1 + · · ·+Pk would have smaller w-weight than the optimal
tour.) Therefore, it is a consequence of the lemma that it suffices to look for
walks with their set of ends being U and total w-length minimal. These walks
can be obtained via the computation of a max w-weight matching in a general
graph, leading to the following algorithm.

Algorithm 1.7.2
Input: A graph G with a weight function w : E(G)→ R≥0

Output: An optimal postman tour P in G.

• Find the vertices U of odd degree in G

• Use Floyd’s Algorithm 1.6.12 to find a w-shortest (x, y)-path Px,y for all
x, y ∈ V and x 6= y.

• Define the complete graph KU with vertex set U and weighting w′ with
w′(x, y) := −w(Px,y).

• Find a max w′-weight perfect matching M in KU (using the ideas of Sec-
tion 1.7.2).

• For each (x, y) ∈M add the path Px,y to G by duplicating edges.

• Run Fleury’s Algorithm on the new Eulerian graph G to obtain an Eule-
rian path P .

• Return P (considered as a tour in the original G).

Example 1.7.3 Consider the graph on the top left in Figure 20. We find an
optimal postman tour by applying the algorithm. Notice that the three Px,y

paths that need to be added consist of 1, 1 and 2 edges respectively.

1.7.2 Edmonds’ perfect matching polytope theorem

We generalise the perfect matching polytope discussed in Exercise 1.1.3 for
bipartite graphs to general graphs.

Definition 1.7.4 Given a graphG = (V,E) and a subsetM ⊆ E, we define the
characteristic vector (or incidence vector) χM ∈ RE with coordinates (χM )e =
1 if e ∈ M and (χM )e = 0 if e 6∈ M . The perfect matching polytope PMP (G)
of a graph G is defined as

PMP (G) := conv({χM : M is a perfect matching in G}).
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Figure 20: The graph G in Example 1.7.3 with its weighting w. The graph KU

with its weighting w′ and a max weight perfect matching. The graph G after
adding three paths. An Eulerian tour in the new G graph - that is, an optimal
postman tour in the old G graph.
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Figure 21: The three graphs in Exercise 1.7.5.

We notice that if |V (G)| is odd, thenG has no perfect matching and PMP (G) =
∅.

Exercise 1.7.5 Find PMP (G) for each of the graphs in Figure 21.

Recall that for any subset U ⊆ V , we define the edge cut ∂(U) as the set
of edges in G with one end in U and the other in V \ U . We use the weight
notation of the previous sections and in particular write x(∂(U)) :=

∑
e∈∂(U) xe

for x ∈ RE .
In the following theorem (and in particular in its proof) we allow the graph

to have parallel edges. A similar proof can be found in [3].

Theorem 1.7.6 (Edmonds’ perfect matching polytope theorem) For a
loop-free graph G the perfect matching polytope is also described by the inequal-
ities:

1. xe ≥ 0 for all e ∈ E

2. x(∂({v})) = 1 for all v ∈ V

3. x(∂(W )) ≥ 1 for all W ⊆ V with |W | odd

where x ∈ RE.

Proof. Let Q ⊆ RE be the solution set to the inequalities above. We argue that
Q = PMP (G).

To prove Q ⊇ PMP (G), we observe that for any perfect matching M the
characteristic vector χM satisfies equations (1) trivially, equations (2) because
M is a perfect matching, and equations (3) because at least one vertex in W is
not matched with vertices from W in M .

To prove Q ⊆ PMP (G), first consider the case where G is a cycle or a
disjoint union of cycles. We prove this case in Exercise 1.7.9.

For general graphs, suppose that there were graphs where Q ⊆ PMP (G)
was not the case, and furthermore suppose that we have a counter example G
with |V | + |E| as small as possible where it is not the case. We know that
both PMP (G) and Q are polytopes (the second set is bounded). Because
Q 6⊆ PMP (G) there must exist a vertex x of Q which is not in PMP (G).

If for some e ∈ E we have xe = 0, then the smaller graph G\e would also be a
counter example (Exercise 1.7.10). Similarly if xe = 1 the smaller graph G with
e and its ends removed would also be a counter example (Exercise 1.7.11). The
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counter example G has no isolated vertex v, since in that case PMP (G) = ∅ and
also the type two inequality for v cannot be satisfied. Therefore Q = PMP (G)
and G would not be a counter example. The graph has no vertex v of degree
1, because then the incident edge e would have xe = 1. Therefore all vertices
have degree ≥ 2. Not all degrees can be 2 because G is not a union of cycles.
Therefore |V | < |E|.

The vertex x is the intersection of |E| hyperplanes in RE obtained by chang-
ing the inequalities above to equations. They cannot be of type 1, and only |V |
of them can be of type 2. Therefore one of the equations must be of type 3.
Hence there exists W ⊆ V with |W | odd so that x(∂(W )) = 1. If |W | = 1 then
this equation would be of type 2. Therefore we assume |W | ≥ 3.

Let G′ be the graph obtained by contracting W to a single vertex u′. Let
x′ the vector induced by x on the smaller edge set. Edges disappear when they
have both ends in W . However, parallel edges may appear in the contraction.
The vector x′ is a coordinate projection of x. This x′ satisfies inequalities 1-3
for the smaller graph G′ (Exercise 1.7.12). Similarly we define G′′ and x′′ by
contracting V \W . The projection x′′ of x satisfies inequalities 1-3 for the graph
G′′.

Both G′ and G′′ are smaller than G and therefore we can write

x′ =
∑
M ′

λM ′χM ′ and x′′ =
∑
M ′′

µM ′′χM ′′

where the first sum runs over all M ′ being matchings in G′, the second sum runs
over all M ′′ being matchings in G′′ and

∑
M ′ λM ′ = 1 =

∑
M ′′ µM ′′ . Because all

data is rational we can assume (essentially by Cramer’s rule) that λM ′ , µM ′′ ∈ Q
or rather that there exists k ∈ N \ {0} such that

kx′ =
∑
M ′i

χM ′i
and kx′′ =

∑
M ′′i

χM ′′i

where the sum run over sets of matchings M ′1, . . . ,M
′
r and M ′′1 , . . . ,M

′′
s with

possible repeats. Let e ∈ ∂(W ). The coordinate (kx′)e is the number of times
that e appears in an M ′i . Because x′ and x′′ are projections of x we also have
(kx)e = (kx′)e = (kx′′)e. Therefore the number of times that e appears in
M ′1, . . . ,M

′
r is the number of times that e appears in M ′′1 , . . . ,M

′′
s . Since this

holds for each e we may assume after reordering (because M ′i and M ′′i contain
exactly one edge from ∂(W ) each) that for all i, M ′i and M ′′i contain the same
edge from ∂(W ). Therefore M ′i ∪M ′′i is a matching in G. We conclude that
kx =

∑
i χM ′′i ∪M ′i and therefore x is a convex combination of the characteristic

vectors of the perfect matchings M ′1 ∪M ′′1 , . . . ,M ′r ∪M ′′r . A contradiction. 2

Example 1.7.7 Let’s verify the theorem for the complete graph K4 using the
online polytope calculator “Polymake”13: http://shell.polymake.org . In this
case inequalities of type 3 are redundant (why?). The polytope lives in R6. The

13The polymake system conveniently ties many pieces of polytope software together and
allows the user to use them in a uniform way. The main developers are Gawrilow and Joswig,
but through the included software the system has contributions from over a hundred people.
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inequalities of type 1 are encoded by a 6× 7 matrix A, where the first column
i treated specially. Similarly, the inequalities of type 2 are encoded by a 4× 7
matrix B. We hand this H-description to Polymake and ask for the vertices:

polytope > $A=new Matrix<Rational>([[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],

[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]);

polytope > $B=new Matrix<Rational>([[-1,1,1,1,0,0,0],

[-1,1,0,0,1,1,0],[-1,0,1,0,1,0,1],[-1,0,0,1,0,1,1]]);

polytope > $p=new Polytope<Rational>(INEQUALITIES=>$A,EQUATIONS=>$B);

polytope > print $p->VERTICES;

1 0 0 1 1 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 1

Back we get the vertices (0, 0, 1, 1, 0, 0), (0, 1, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1) which are
also the characteristic vectors of the three perfect matchings in K4.

Exercise 1.7.8 Give an example of a graph G with a loop where the statement
of Theorem 1.7.6 is false.

Exercise 1.7.9 Fill the first gap in the proof of Theorem 1.7.6 by proving the
theorem in the case where

• G is a cycle.

• G is a disjoint union of cycles.

Exercise 1.7.10 Fill the second gap in the proof of Theorem 1.7.6.

Exercise 1.7.11 Fill the third gap in the proof of Theorem 1.7.6.

Exercise 1.7.12 Fill the fourth gap in the proof of Theorem 1.7.6.

1.7.3 A separation oracle

We discuss the following problem. Given a graph G = (V,E) and a point
x ∈ RE , how do we decide if x ∈ PMP (G) and moreover, if x 6∈ PMP (G), how
do we find a vector w ∈ RE such that ω ·x > ω ·y for all y ∈ PMP (G)? That is,
how do we find a separating hyperplane between x and PMP (G)? A method
for answering such a question is called a separation oracle. If a quick separation
oracle exists, then the so called ellipsoid method will give a (theoretically) quick
method for maximising linear functions over PMP (G).

It is easy to check the two first sets of linear inequalities/equations of The-
orem 1.7.6 by plugging in the coordinates of x. Suppose they are all satisfied.
The third set, however, contains exponentially many inequalities (expressed as
a function of |V |). Rather than substituting, we wish to compute

minW⊆V with |W | odd(x(∂(W ))) (4)
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Figure 22: The graph of Example 1.7.14 with its weighting w. The Gomory-Hu
tree with its weighting.

and a subset W where the value is attained. If the value is ≥ 1 then all
exponentially many inequalities of Theorem 1.7.6 are satisfied. If not, then at
least one inequality (for example the one indexed by W ) is not satisfied.

To compute the minimum efficiently we need to introduce so called Gomory-
Hu trees. In the following we consider G = (V,E) with a weight (or capacity)
function w : E → R≥0. For s, t ∈ V with s 6= t, an (s, t)-cut is an edge cut of
the form ∂(W ) with W ⊆ V and s ∈W 63 t.

Definition 1.7.13 A Gomory-Hu tree of G is a tree T with V (T ) = V (G) and
with weights w′ : E(T )→ R≥0 such that the following property holds:

• For all s 6= t the edge e on the path sT t with w′(e) minimal defines a cut
∂(W ) by letting W be the vertices of one of the connected components of
T \ e. Moreover, this cut is a w-minimal (s, t)-cut and has weight w′(e).

Example 1.7.14 Consider the graph G of Figure 22 with weighting (capaci-
ties) w. The weights of all w-minimal (s, t)-cuts in G are shown in the following
table.

A B C D E F

A 3 3 2 2 1
B 3 4 2 2 1
C 3 4 2 2 1
D 2 2 2 4 1
E 2 2 2 4 1
F 1 1 1 1 1

For example, the smallest w-weight of an (A,C)-cut is 3. All the values in the
table are encoded in the Gomory-Hu tree shown on the right in the figure. For
example, the unique path in this tree from A to C contains two edges. The
smallest weight edge of these two has weight 3.

Exercise 1.7.15 Choose some graph with a weighting. Find its Gomory-Hu
tree.

A Gomory-Hu tree of a graph can be computed via the Gomory-Hu Algorithm,
which we will not present. The algorithm runs in polynomial time.
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Any non-trivial edge cut is an (s, t)-cut for some vertices s and t. Therefore,
we can compute

minW⊆V with |W |6∈{0,|V |}(x(∂(W ))) (5)

simply by finding an edge in T with minimal w′ weight. However, this is not
the minimum we want to compute in (4), since we want to restrict ourselves to
odd cuts ∂(W ). (Meaning |W | must be odd).

We explain how Gomory-Hu trees can also be used for this computation.
From now on we now assume that |V (T )| is even. An edge of T is called odd

if, by removing it from T , the set V (T ) splits into two connected components
of odd size.

Algorithm 1.7.16 (Padberg-Rao)
Input: An graph G = (V,E) with |V | > 0 and even and a weight function
w : E → R≥0.
Output: An odd set W ⊂ V such that w(∂(W )) is minimal.

• Find the Gomory-Hu tree T with weights w′.

• Find an odd edge e such that w′(e) is minimal and let W be the vertices
of one of the components of T \ e.

Proof. We wish to prove that W defines a cut with weight at least as small as
that of any other cut of an odd sized set. Let W ′ ⊆ V with |W ′| odd, defining
a cut ∂(W ′). The vertex-induced subgraph14 T [W ′] is a forest15 with an odd
number of vertices. Therefore, one of the components in T [W ′] must be a tree
T ′ with an odd number of vertices. Because W ′ 6= V there must be an edge
e′ = (s, t) ∈ E(T ) with s ∈ V (T ′) and t ∈ V \W ′. In particular e′ ∈ ∂(W ′).
We now claim

w(∂(W ′)) ≥ w′(e′) ≥ w′(e) = w(∂(W )).

To prove this, first observe that T with weights w′ being a Gomory-Hu tree
implies that w′(e′) is the smallest weight of an (s, t)-cut. On the other hand,
∂(W ′) is such an (s, t)-cut. This proves the first inequality. The second follows
from the algorithm’s choice of e. The equality follows because W was chosen as
the vertices of one component of T \ e and T with weights w′ is a Gomory-Hu
tree. 2

The algorithm is an efficient method for checking the exponentially many type 3
inequalities of Edmonds’ perfect matching polytope theorem (Theorem 1.7.6).
To check whether a vector x ∈ RE satisfies all type 3 inequalities, simply
compute minW⊆V,|W | oddx(∂(W )). If this number is smaller than 1 then one of
the inequalities is not satisfied. Which one is determined by the W found by
Algorithm 1.7.16. This completes the description of the separation oracle.

14See Appendix A.
15A graph is called a forest if all its components are trees.
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1.7.4 Some ideas from the ellipsoid method

Suppose P is a polytope (bounded polyhedron) which we do not know. Suppose
we also know that

• P is contained in some big ball B ⊆ Rn

• P is either full-dimensional or empty,

• if P is non-empty, then its volume is at least 1,

• we have a separation oracle, which means that we can ask for any point
x ∈ Rn if x ∈ P and if it is not, then we get a hyperplane H with x on
one side x ∈ H− and P on the other side P ⊆ H+.

Initially we know P ⊆ B. By using the oracle wisely, we will either guess a
point in P or we will produce smaller and smaller sets say B1, B2, . . . containing
P by letting Bi = Bi−1 ∩H+

i−1 as we go along. By clever choices of the point
x, we can make the volume of Bi arbitrary small as i increases. If the volume
of Bi is less than 1, then P must be empty. Therefore, this gives a method for
deciding if P is empty.

One problem with the method is that at each step the set Bi is described
as the intersection of B with i halfspace. Therefore the representation gets
more and more complicated as i increases. One method that avoids this is the
ellipsoid method where the set Bi is represented by a slightly larger ellipsoid Ei.
See Figure 23 for the first few steps of a run of the ellipsoid method. The rate
at which the volumes of these ellipsoids decrease allowed Khachiyan to prove
that the ellipsoid method can be used to solve Linear Programming problems
in polynomially many iterations (in the size of the LP problem).

Our LP problem is exponential in size (as a function of |V |) but we still
have a separation oracle. Therefore the ellipsoid method can be applied. In
fact the method can be used to maximise a linear function over polyhedron for
example the perfect matching polytope. We have skipped a lot of things in this
presentation of the ellipsoid method. For example our matching polytope is not
full-dimensional, and if the ellipsoid method did find an x ∈ P , this x might not
be a vertex of the matching polytope (since it did not have 0, 1-coordinates),
and we would not now how to recover the matching.

For the purpose of this class however, we consider the problem solved, when
we know an efficient separation oracle.

Remark 1.7.17 An important remark on the ellipsoid method is that it is
mainly of theoretical interest and does not perform that well in practise. For
example for Linear Programming where the constraints are written as a matrix,
interior point methods exists which work well both in theory and practise, and
one would never use the ellipsoid method in this setting.
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Figure 23: Some iterations of the ellipsoid method. The polytope P is hidden
somewhere in the intersection of all the ellipsoids. Using the separation oracle,
a hyperplane is produced, and we now know that P must be hidden in the
smaller ellipsoid in the middle picture. Using the center of the ellipsoid as x we
get a new separating hyperplane, and we conclude that P must be contained in
the even smaller ellipsoid in the picture to the right. The process is repeated
until a point in P is guessed, or the ellipsoids are so small that the conclusion
is that P is empty.

2 Matroids

Before talking about matroids we will first do the following two exercises as a
warm up and also briefly study planar graphs.

Exercise 2.0.1 Consider the matrix(
1 1 0 2 2
3 0 0 0 1

)
.

Let’s assign the names a, b, c, d and e to the columns of the matrix. The columns
a and b are linearly independent. Therefore we call {a, b} an independent set of
columns. Find all independent sets of columns of the matrix. Among these find
all the maximal independent sets. What are their sizes? What are the minimal
non-independent sets? Do they have the same size?

Exercise 2.0.2 Consider the complete graph K4 with 4 vertices and 6 edges.
Let’s call a (spanning) subgraph of K4 independent if it does not contain a cycle.
How many independent (spanning) subgraphs of K4 are there? What are the
maximal independent subgraphs? What kind of graphs are they? How many
edges do they contain? What are the minimal non-independent subgraphs? Do
they have the same number of edges?

2.1 Planar graphs

Definition 2.1.1 A graph G is planar if we can draw it in the plane R2 such
that edges only overlap at vertices.

Example 2.1.2 The complete graph K4 is planar. See Figure 24.
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A drawing like those in Figure 24 is called an embedding of the graph. A graph
together with an embedding is called a plane graph.

Remark 2.1.3 It is possible to prove that whether we require edges to be
drawn as straight lines or as continuous paths in the plane does affect the
notion of planar graphs as long as graphs are assumed to have no parallel
edges. However, some of the edges will be parallel in our examples. Therefore
we allow edges to be drawn as nonstraight lines.

Proposition 2.1.4 The complete graph K5 is not a planar graph.

Proof. Suppose we had an embedding. Then we would have a closed path C0

in the plane going through v1, v2, v3, v1. There now are two different situations,
both shown in Figure 25.

In the first situation (left) v4 is on the inside of C0. We observe that v5

must also be on the inside of C0 since v4 and v5 are connected by an edge not
intersecting C0. On the inside of C0 there are three regions. However, it is
impossible for v5 to be in any of these regions as it then could not be connected
to the outside vertex by an edge without intersecting C0.

Now we consider the case where v4 is outside. Without loss of generality
the situation is as drawn on the right in Figure 25. We now have the closed
paths C1 = v2v3v4v2, C2 = v3v1v4v3, C3 = v1v2v4v1. Because v1 is outside the
closed path C1 and v5 is connected to v1 by a path, v5 is outside C1. Similarly
we get that v2 being inside C2 implies v5 being inside C2 and v3 being outside
C3 implies v5 being outside C3. In the picture, the only possibility for v5 is
that it is inside C0. This contradicts v4 being outside C0 and v4 and v5 being
connected by an edge. Hence K5 has no embedding in the plane. 2

We have used the following theorem (maybe without noticing):

Theorem 2.1.5 (Jordan’s Curve Theorem) Let S1 ⊆ R2 be the unit circle
and f : S1 → R2 an injective continuous function and let C = f(S1) be its
image. Then R2 \ C has exactly two connected components. One is bounded
and the other is unbounded. The curve C is the boundary of each component.

Figure 24: Two drawings of the graph K4 in the plane.
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Figure 25: The two situations in the proof of Proposition 2.1.4.

The statement of the theorem is intuitively obvious. However, it is difficult
to give a formal proof of the theorem. Such a proof is given in the Topology
classes (for the pure mathematicians) - see also Exercise 4.5.8.

We used Jordan’s Curve Theorem in the proof of Proposition 2.1.4. In
particular we talked about a closed path in the plane having an “inside” and
“outside”, refering to the bounded and unbounded component.

Besides drawing graphs in the plane, a possibility is to draw graphs on the
unit sphere. However, the graphs which can be embedded in the plane are
exactly the graphs which can be embedded in the sphere. This is [1, Theo-
rem 10.4]. The idea is to stereographically project the sphere to the plane.

Exercise 2.1.6 Can any graph G be embedded in R3? Here are two strate-
gies/hints for solving the exercise:

• If four points p1, . . . , p4 are uniformly and independently distributed over
the cube [0, 1]3, what is the probability of straight line segments (p1, p2)
and (p3, p4) intersecting?

• [1, Exercise 10.1.12] suggests to embed the vertices of the graph as differ-
ent points on the curve

{(t, t2, t3) : t ∈ R}

and make each edge a straight line. Why would that work?

2.2 Duality of plane graphs

We now consider plane graphs. That is, we consider graphs which are embedded
in the plane. We let G also denote the embedding of a graph G. The set R2 \G
is then a disjoint union of connected components. We call these components
faces of G.

Example 2.2.1 The plane graph on the left in Figure 26 has four faces.

Definition 2.2.2 Let G be a plane graph. Its dual graph G∗ is defined to be
the graph which has a vertex for each face of G and an edge e∗ for each edge e
in G such that e∗ connects the vertices for the faces that e separates.
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Example 2.2.3 The dual graph of the plane graph of Example 2.2.1 is shown
to the right of Figure 26.

Remark 2.2.4 Since we do not provide a specific embedding of G∗ (we do not
give actual coordinates of vertices and edges), we should really think of G∗ as
an equivalence class of plane graphs, where plane graphs are equivalent if we
can continuously deform them into each other without letting edges overlap
on the way. In Figure 26 we actually have a choice of letting the left most
edge in G∗ connect the lower end to the upper as indicated or letting the
edge go from the lower end to the upper end around the graph counter clock-
wise. The two possibilities of dual graphs are not equivalent if considered as
embeddings in the plane. However, if the graphs are drawn on the sphere, then
they can be continuously deformed into each other, and we should regard them
as equivalent.

One can prove that if G is a connected plane graph, then (G∗)∗ = G (in the
sense of equivalence described above). It is easy to observe in many examples.
(Why does the graph have to be connected?)

It is extremely important that the graph is plane when talking about its
dual as the following example shows.

Example 2.2.5 (from wikipedia) The underlying graph of the two plane
graphs of Figure 27 are isomorphic. However, their dual graphs are not. (Left
as an exercise).

2.3 Deletion and contraction in dual graphs

Recall that when we delete an edge from a graph we leave the remaining vertices
and edges untouched. The number of edges decreases by one, while (for a plane
graph) the number of faces decreases (unless the same face is on both sides of
the edge).

When we contract an edge on the other hand, two vertices get identified.
The number of edges decreases by one and so does the number of vertices, while
(for plane graphs) the number of faces stays the same (unless the contracted
edge is a loop).

Figure 26: The plane graph of Example 2.2.1 and its dual (see 2.2.3
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Figure 27: The two plane graphs are isomorphic, but their duals are not. See
Example 2.2.5.

Example 2.3.1 In Figure 28 we consider a plane graph G. First deleting an
edge e and then taking its dual is the same as taking the dual G∗ and contracting
the edge e∗ in it.

2.4 Matroids

A matroid is a mathematical object which captures many properties of a graph.
We can define deletions and contractions for a matroid and every matroid has
a dual matroid. In this sense a matroid fixes one of the problems we have with
graphs. However, not every matroid comes from a graph.

Matroids can be defined by specifying a set of axioms that the matroid must
satisfy. There are several equivalent ways of defining matroids (Definition 2.4.2,
Theorem 2.6.1, Theorem 2.7.4, Theorem 2.8.4). We start by defining them in
terms of independent sets.

2.4.1 Independent sets

Imagine that we have a matrix A with n columns indexed by a set S. We call a
subset of S independent if the columns of A indexed by the subset are linearly
independent. Observe that the following three properties hold:

• The empty set of columns ∅ is independent.

• If I ⊆ S is independent, then so is any J ⊆ I.

• If A,B are independent subsets of columns, with |B| = |A|+ 1 then there
exists b ∈ B \A such that A ∪ {b} is independent.

Usually the question of whether ∅ is independent is ignored in linear algebra.
However, if the definition of linear independence is read carefully then ∅ is
indeed independent. The second claim follows easily from the definition of
linear independence while the last needs a tiny bit of work.
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Figure 28: Doing a deletion on a graph corresponds to doing a contraction on
the dual. See Example 2.3.1.

Exercise 2.4.1 What is the definition of a set of vectors being dependent?
Why is ∅ independent? Prove that the other two properties above hold.

A matroid captures the essence of independence:

Definition 2.4.2 Let S be a finite set and I a set of subsets of S. The pair
M = (S, I) is called a matroid with ground set S if the following hold:

I1: ∅ ∈ I.

I2: If A ∈ I and B ⊆ A then B ∈ I.

I3: If A,B ∈ I and |B| = |A| + 1 then there exists b ∈ B \ A such that
A ∪ {b} ∈ I.

The set in I is called the independent sets of the matroid M . A subset of S
which is not independent is called dependent.

Definition 2.4.3 Let A be a matrix with real entries and columns indexed by
a set S. The vector matroid of A is the pair (S, I) where

I := {B ⊆ S : the columns of A indexed by B are linearly independent}.

That vector matroids are matroids follows from Exercise 2.4.1.

Example 2.4.4 Consider the matrix

A =

(
1 1 2
0 1 0

)
.
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with columns indexed by S = {1, 2, 3}. The vector matroid of A is (S, I) where
I = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}}.

For vector matroids it is natural to define a maximal independent set to be
a basis. We do this for matroids in general:

Definition 2.4.5 A basis of matroid (S, I) is a subset B ⊆ S such that B ∈ I
but no other superset of B is in I.

Lemma 2.4.6 All bases of a matroid have the same number of elements.

Proof. Let A and B be two bases of a matroid M = (S, I). Suppose for
contradiction that |B| > |A|. Then pick a subset B′ ⊆ B with |B′| = |A| + 1.
By property I2, we have B′ ∈ I. By property I3 there exists b ∈ B′ \ A such
that A ∪ {b} ∈ I. This contradicts A being a maximal independent subset of
S. 2

The size of any basis of a matroid is called the rank of the matroid.

2.4.2 The cycle matroid of a graph

We now consider matroids arising from graphs.

Definition 2.4.7 Let G = (V,E) be a graph. Let S = E. We identify subsets
of S with spanning subgraphs of G. (By letting a subset A ⊆ S correspond to
the spanning subgraph with edge set A.) We let I be the set of subgraphs not
containing a cycle. The pair (S, I) is called the cycle matroid of G.

In other words the independent sets of the cycle matroid are the (spanning)
subforests of G.

Example 2.4.8 The cycle matroid of the graph on the left in Figure 21 has
14 independent sets:

I = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}

with 1 denoting the edge not being part of the cycle.

Proposition 2.4.9 The cycle matroid of a graph is a matroid.

Proof. The empty set contains no cycle. Hence ∅ ∈ I. If A contains no cycle,
then a subgraph of B also contains no cycle. This proves I1 and I2.

Suppose I3 did not hold. Let A and B be two subforests with |B| = |A|+ 1
and such that for every edge b of B, A ∪ {b} contains a cycle. Then for every
edge of B the two ends are connected in A by a walk. Hence the numbers of
components satisfy c(A) ≤ c(B). Since A and B are forests c(A) = n − |A| >
n− |B| = c(B). This is a contradiction. 2
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In the same way that we defined bases for matroids in general, we will
now define cycles for matroids. However, it is common not to call these cycles
“cycles” but rather “circuits”.

Definition 2.4.10 A minimal dependent set of a matroid M = (S, I) is called
a circuit. The set of all circuits is denoted by C(M).

Example 2.4.11 The cycle matroid of Example 2.4.8 has only a single circuit,
namely {2, 3, 4}.

Example 2.4.12 The circuits of Exercise 2.0.1 are

C(M) = {{c}, {b, d}, {a, b, e}, {a, d, e}}.

Exercise 2.4.13 Let G be the graph in Example 2.4.8. Let H be a spanning
subgraph of G with isolated vertices removed. Prove that H is cycle if and only
if it is a circuit of the cycle matroid of G. Prove the same statement for an
arbitrary graph G.

Exercise 2.4.14 Let G be a connected graph. Prove that the spanning trees
of G are exactly the bases of the cycle matroid of G.

Exercise 2.4.15 Consider the matrix

A =

 1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 .

with columns indexed by S = {1, 2, 3, 4, 5, 6, 7}. Make a drawing of the vectors.
(Draw how the rays they generate intersect the triangle conv(e1, e2, e3).) Find
all independent sets of the the vector matroid of A. Is {4, 5, 6} an independent
set? Consider the pair (S, I ′) where I ′ := I ′ \ {{4, 5, 6}}. Prove that (S, I ′) is
a matroid.

(Hint: Instead of working over R, consider the field Z/2Z.16 Over this field
A will still define a vector matroid and the argument of Exercise 2.4.1 still
holds. Prove that the resulting vector matroid is (S, I ′).)

The matroid (S, I ′) in Exercise 2.4.15 is called the Fano matroid. If is not
realisable as a vector matroid over R, but is over Z/2Z.

2.5 The transversal matroid of a bipartite graph

So far we have seen how to construct the vector matroid of a vector configuration
and the cycle matroid of a graph. In this section we will see a way to construct
a matroid from a bipartite graph.

16As explained in the Linear Algebra class, concepts like linear independence, linear sub-
spaces, determinants and row reduction work for fields different from the well-known Q, R
and C. An example of such different field is Z/2Z, having just two elements {0, 1}. The field
operations are as usual with the exceptions that 1 + 1 = 0 and −1 = 1.

50



3

1

2

Figure 29: The graph used in Example 2.5.2.

Definition 2.5.1 Let G[X,Y ] be a bipartite graph. The transversal matroid
of G is the pair (X, I) where

I := {I ⊆ X : ∃ a matching M : I is the set of vertices of X covered by M}.

Example 2.5.2 Consider the graph G[X,Y ] in Figure 29. The transversal
matroid of G has the independent sets

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}}.

Proposition 2.5.3 The transversal matroid (X, I) of a bipartite graph G[X,Y ]
is a matroid.

Proof. We must prove that I satisfies matroid axioms I1, I2 and I3. Choosing
the empty matching M =, we see that ∅ ∈ I. This proves I1.

Because any subset of a matching in G[X,Y ] is also a matching, any subset
of an element I ∈ I is also a subset in I. This proves I2.

Finally, to prove I3, let A,B ∈ I with |B| = |A| + 1 and let MA and
MB be corresponding matchings in G. Then |MB| = |MA| + 1. Consider the
graph G′ being G restricted to the vertices A∪B and Y . The matching MA is
not a maximum matching in G′ because MB has larger cardinality. By Berge’
Theorem 1.2.3 there exists an MA-augmenting path P in G′. Consequently
MA4P is a matching in G′ covering exactly A and one vertex b from B \ A.
Hence we have found an element b ∈ B \A such that A ∪ b ∈ I, as desired. 2

2.6 Basis axioms

We observe that if the bases of matroid are known, it is easy to find the in-
dependent sets. Namely, a set is independent if it is a subset of a basis. It is
desirable to characterise matroids in terms of their bases.

Theorem 2.6.1 Let M = (S, I) be a matroid. The set B of bases of M satis-
fies:

B1: B 6= ∅ and no element from B is a subset of another element from B.

B2: If B1, B2 ∈ B and x ∈ B1 then there exists y ∈ B2 such that (B1 \ {x}) ∪
{y} ∈ B.
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Conversely, if a collection of subsets B satisfies B1 and B2 above, then

I = {I ⊆ S : ∃B ∈ B : I ⊆ B}

is the independent sets of a matroid (with set of bases equal to B).

Proof. Because ∅ ∈ I, there is a at least one basis of M . That means B 6= ∅.
Because bases have the same size (Lemma 2.4.6), no two different bases can be
contained in each other. This proves B1.

For B2, let B1 and B2 be bases and x ∈ B1. Then B1 ∈ I implies B1 \{x} ∈
I. By I3 there exists y ∈ B2 \ (B1 \ {x}) so that (B1 \ {x}) ∪ {y} ∈ I. This
independent set must be a subset of a basis. But since every basis has the same
size, and (B1 \ {x}) ∪ {y} has this size, (B1 \ {x}) ∪ {y} must be a basis.

Suppose now that B is a collection of subsets of a set S satisfying B1 and
B2 and that I is defined as above. We want to prove that (S, I) is a matroid.

Because B 6= ∅, we have ∅ ∈ I, proving I1. I2 follows just by looking at the
definition of I — if I satisfies ∃B ∈ B : I ⊆ B then so does any subset of I.

We now prove that all elements of B have the same size. Suppose B1, B2 ∈ B
with |B2| > |B1|. Then we can repeatedly apply B2 until we reach a B′1 with
B′1 ⊆ B2 and |B′1| < |B2|. This contradicts second part of B1.

To prove I3, let X,Y ∈ I with |Y | = |X| + 1. We must have X ⊆ B1 ∈ I
and Y ⊆ B2 ∈ I for some B1 and B2. Suppose the members of sets were as
follows:

X = {x1, . . . , xk}

B1 = {x1, . . . , xk, bk+1, . . . , br}

Y = {y1, . . . , yk+1}

B2 = {y1, . . . , yk+1, b
′
k+2, . . . , b

′
r}

Choose an element b ∈ B1 \X. Apply B2 to get a y ∈ B2 such that (B1 \{b})∪
{y} ∈ B. If y ∈ Y then X ∪ {y} ⊆ (B1 \ {b})∪ {y} and X ∪ {y} ∈ I as desired.
If y 6∈ Y then keep replacing elements of X by picking another b ∈ B1 \ X
and replace with another found y. Eventually, because there are more b’s from
B1 then from B2, the y must be in Y . When that happens, we conclude that
X ∪ {y} ∈ I. 2

Two proofs of the same matroid statement are often close to identical. For
example, the proof above is very similar to the proof of [11, Theorem 10.7].
Indeed the names of the symbols have been taken from there.

2.7 Matroid polytopes

Exercise 2.7.1 Consider the graph G in Figure 30. Let e be the edge 5.

• Find all bases of the cycle matroid of G.

• Find all bases of the cycle matroid of G/e (contraction of e in G).

• Find all bases of the cycle matroid of G \ e (deletion of e from G).
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Figure 30: The graph used in Example 2.7.1.

• What is the relation among the number of bases of the matroids above?

Definition 2.7.2 ([2]) Let M = (S, I) be a matroid with set of bases B.
Define the matroid polytope of M

P (M) := conv(χB) : B ∈ B}

where χB ∈ {0, 1}S is the characteristic vector of B ⊆ S.

Example 2.7.3 The matroid polytope of the cycle matroid of a 3-cycle is a
triangle in R3.

How would we check if the convex hull of the columns of

A =


1 1 1 0 0
1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 .

is a matroid polytope? The theorem below gives an easy characterisation of
matroid polytopes. For low dimensions, to see if a polytope is a matroid poly-
tope we simply draw the polytope and look at its edges. The polytope above
is a matroid polytope.

Theorem 2.7.4 ([2]) A non-empty polytope P ⊆ Rn is a matroid polytope if
and only if

1. its vertices are in {0, 1}n and

2. its edges are all in directions ei − ej.

Proof. ⇒:Suppose P is a matroid polytope. Then all vertices of P are among
the set of points we take convex hull of in the definition of the matroid polytope.
This proves the first claim. To prove the second claim, let I, J ∈ B so that χI

and χJ are connected by an edge. Define m = 1
2(χI +χJ). We give the elements

of S names 1, . . . . Without loss of generality we can write up

χI = (1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0)
χJ = (0, . . . , 0, 1, . . . , 1, 1, . . . , 1, 0, . . . , 0)
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Where we let p ∈ N be such that 2p is the number of positions at which the two
vectors differ. The number p must be an integer because all bases of a matroid
have the same size (Lemma 2.4.6).

Our goal is to prove p = 1. Suppose for contradiction that p > 1. We then
use B2 to exchange 1 ∈ I with some element of J . Without loss of generality
we may assume K1 := (I \ {1}) ∪ {p+ 1} ∈ B.

Now exchange p+ 1 ∈ J with an element from I to get K2. Now K2 6= (J \
{p+1})∪{1} because if it was this vector 1

2(χK1 +χK2) = m contradicting that
m is on an edge. Therefore (without loss of generality) K2 = (J \{p+1})∪{2}.

Now exchange 2 ∈ I with an element from J to get K3. Now K3 6= (I \
{2})∪{p+1} because if it was this vector 1

2(χK2 +χK3) = m contradicting that
m is on an edge. Therefore (without loss of generality) K3 = (I \{2})∪{p+2}.

Now exchange p + 2 ∈ J with an element from I to get K4. Now K4 6=
(J \ {p+ 2})∪{1} because if it was this vector 1

4(χK1 +χK2 +χK3 +χK4) = m
contradicting that m is on an edge. Moreover K4 6= (J \ {p+ 2})∪{2} because
then 1

2(χK3 +χK4) = m contradicting that m is on an edge. Therefore (without
loss of generality) K4 = (J \ {p+ 2}) ∪ {3}.

Continuing in this way, we will run out of options of elements to introduce
to the bases. That will be a contradiction. Therefore the assumption that p > 1
is wrong, and p must be equal to 1, implying the second statement.
⇐: Conversely, let P be a polytope with the two properties and coordinates

indexed by a set S. We want to construct a matroid M so that P (M) = P .
Define

B = {I ⊆ S : χI ∈ P}

It suffices to prove that B is the set of bases of a matroid. By Theorem 2.6.1 it
suffices to prove B1 and B2.

Because P 6= ∅, we have B 6= ∅. Moreover, because any two vertices of a
polytope are connected by an edge path, and edges are in directions ei− ej , all
vertices of P have the same coordinate sums. That proves that all elements in
B have the same number of elements. Hence B1 is satisfied.

To prove B2, let I, J ∈ B and x ∈ I. If x ∈ J , we can simply choose y = x
and satisfy B2. Hence we assume that x 6∈ J . After rearranging coordinates we
have

χI = (1, . . . , 1, 0, . . . , 0 1, . . . , 1, 0, . . . , 0)
χJ = (0, . . . , 0, 1, . . . , 1, 1, . . . , 1, 0, . . . , 0)

A B C D

with A,B,C,D being a partition of S into four subsets. We have x ∈ A,
I = A∪C and J = B∪C. Let E1, . . . , Er denote a subset of the edge directions
in P leaving vertex χI allowing the expression χJ − χI =

∑
i aiEi with all

ai > 0. Having χI ∈ P ⊆ [0, 1]S implies for j = 1, . . . , r

• (Ej)i ≥ 0 for i ∈ B ∪D and

• (Ej)i ≤ 0 for i ∈ A ∪ C.

Consequently, because χJ−χI is zero at coordinates indexed by D, we conclude
that all Ej have D-coordinates 0.
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Because (χJ − χI)x = −1, some Ej must equal ey − ex for some y. By the
second inequality above, y ∈ B ∪D. But also y 6∈ D because all D-coordinates
are zero. Hence we have found y ∈ B = J \ I such that (I \ {x}) ∪ {y} ∈ B. 2

Exercise 2.7.5 The diameter of a graph G is the largest distance between
two vertices of the graph. That is, it is the largest entry of the distance matrix
of the matrix of G, assuming that all edges are assigned length 1. The edge
graph of a polytope P is the graph with V being the vertices of P and two edge
being connected by an edge if their convex hull is an edge in P . Prove that
the diameter of the edge graph of a matroid polytope is at most the rank of
the matroid. (Hint: Let χM and χM ′ be two vertices and use Theorem 2.6.1 to
construct a sequence of vertices between them such that the convex hull of two
consecutive vertices is an edge of P .)17

2.7.1 Duals, deletion and contraction

An immediate consequence of Theorem 2.7.4 is that if P is a matroid polytope,
then so is (1, . . . , 1)t − P = {(1, . . . , 1)t − v : v ∈ P}. This allows us to define
the dual matroid.

Definition 2.7.6 Let M be a matroid on S with matroid polytope P then the
dual matroid M∗ is the matroid on S with matroid polytope {(1, . . . , 1)t − v :
v ∈ P}.

We note that B is a basis of M = (S, I) if and only if S \B is a basis of M∗.

Example 2.7.7 The dual matroid of the cycle matroid of the three cycle C3

has independent sets {∅, {1}, {2}, {3}}.

Exercise 2.7.8 Do the dual graphs of the two plane graphs in Figure 27 have
equal cycle matroids? (Hint: How do the cycles of the dual graphs look? Can
we say which edges are involved in a cycle without refering to the embedding
of the graph, but only to the combinatorics?)

Recall that a supporting hyperplane H ⊆ Rn for a polytope P ⊆ Rn is a
hyperplane touching P in a non-empty set an having the rest of P contained
on one side of H. The non-empty intersection F = P ∩H is called a face of P .

It follows from convex geometry that if P is a zero-one polytope (every
vertex of P has vertices in {0, 1}n) then so is any face F of P . Moreover, each
edge of F is also an edge of P . Consequently, each face F of a matroid polytope
P is a matroid polytope.

Definition 2.7.9 Let M = (S, I) be a matroid.

• An element e ∈ S is called a loop if e is not contained in any basis of M .

• An element e ∈ S is called a coloop if e is contained in every basis of M .

17In general the Hirsch conjecture says that the diameter of a D-dimensional polytope
described by m inequalities is ≤ m−D. This conjecture was disproved by Santos in 2010.
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Notice that if a graph G contains a loop e at a vertex v, then {e} is a de-
pendent set in the cycle matroid of G and therefore e cannot be in any basis.
Consequently, e is a loop in the cycle matroid of G.

Definition 2.7.10 Let M = (S, I) be a matroid with matroid polytope P and
a i ∈ S. Let π : RS → RS\{i} be the coordinate projection leaving out the ith
entry. Then for i ∈ S not a coloop we define

• the deletion matroid M \ i to be the matroid on S \ {i} with polytope
π(P ∩ {x ∈ RS : xi = 0}).

For j ∈ S not a loop we define

• the contraction matroid M/i to be the matroid on S \ {i} with polytope
π(P ∩ {x ∈ RS : xi = 1}).

Because the faces P ∩{x ∈ RS : xi = 0} and P ∩{x ∈ RS : xi = 1} both are ma-
troid polytopes (and because these polytopes are “flat”), their projections are
also matroid polytopes. Consequently, the deletion and contraction matroids
are well-defined.

For cycle matroids of graphs, the operations of deletion and contraction
correspond to deletion and contraction of edges in the graphs. This is illustrated
by Exercise 2.7.1. The cycle matroid G/e is the contraction matroid of the cycle
matroid of G, while the cycle matroid G \ e is the deletion matroid of the cycle
matroid of G.

Exercise 2.7.11 How are the rank of a matroid M and the rank of M∗ related?

Exercise 2.7.12 How are the ranks of matroids M , M \ i and M/i related?

Exercise 2.7.13 If we for any graph G let M(G) denote the cycle matroid of
G, is it then true for any plane graph G and e ∈ E(G) (not a loop or coloop)
that

• M(G \ e) = M(G) \ e?

• M(G/e) = M(G)/e?

• M(G)∗ = M(G∗)?

2.8 Greedy algorithms for independence systems

Given a connected graph G with a weight function w : E → R we are interested
in finding a spanning tree T of G with maximal weight w(T ). This can be
accomplished with a greedy algorithm.

Algorithm 2.8.1 (Kruskal’s Algorithm)
Input: A connected graph G = (V,E) with weight function w : E → R.
Output: A spanning tree T of G with maximal w weight.

• Let T := ∅.
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• While T is not a spanning tree

– Find e ∈ E \ E(T ) such that T ∪ {e} does not contain a cycle and
w(e) is maximal.

– T := T ∪ {e}.

• Return T

The above algorithm should be well-known from your Mathematical Program-
ming class. Typically the algorithm is formulated so that it finds a min-weight
spanning tree, but that is not an essential difference.

With our knowledge of matroid polytopes we now observe that we have
bijections between the three sets:

• the spanning trees of G

• the bases of the cycle matroid of G

• the vertices of the matroid polytope of the cycle matroid of G

In fact, we could also have found a max-weight spanning tree of G by
maximising w over the matroid polytope of G, using for example the simplex
method. However, just as for the matching polytope (Theorem 1.7.6), we might
not have a short inequality description of the polytope, so that will not be our
main point.

Rather, we observe that the max-weight spanning tree problem reduces to
the following problem:

• Find an max w-weight independent set of a given matroid.

Namely, if w is positive, a solution to the above problem will be basis. Moreover,
we can by adding a constant to all coordinates of w assume that the w is positive
without changing which spanning trees have maximal weight.

The algorithm for solving the matroid problem is a straight forward trans-
lation of Kruskal’s Algorithm into matroid language.

Algorithm 2.8.2 (The greedy algorithm for matroids)
Input: A matroid M with ground set E and a function w : E → R.
Output: An independent set B of M with maximal w-weight.

• Let I := ∅.

• While (∃e ∈ E \ I : I ∪ {e} ∈ I and w(e) > 0)

– Find e ∈ E \ I such that I ∪{e} is independent and w(e) is maximal
among such choices.

– I := I ∪ {e}.

• Return I
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For the algorithm to run, we do not actually need to know the set I of inde-
pendent sets of M . Rather, it suffices to have an algorithm which will check
whether a given set I is independent or not in M . In particular we are then
able to check the condition in the while loop.

Proof. The algorithm terminates because |I| increases in each iteration. We
now prove correctness. For this we may assume that w ∈ RE

>0, since all e with
w(e) ≤ 0 are ignored by the algorithm. So indeed, the algorithm just operates
with the (repeated) deletion matroid of M where all negative weight elements
of the ground set E have been deleted.

The following statement holds after each iteration of the algorithm:

• There exists a basis B ∈ I with I ⊆ B and w(B) maximal among all
bases of M .

This is true at the beginning of the algorithm because I = ∅ and we can take
B to be any basis of M . For the induction step, let e be the element which
is being added to I. If e ∈ B, then the same choice of B works for the next
iteration (because I ∪ {e} ⊆ B and B has maximal w-weight).

If e 6∈ B we need to construct a new basis B′ containing I∪{e}. If B′ := I∪e
is not already a basis then |B′| < |B| and we can pick a C ⊆ B with |C| =
|B′|+ 1. By I2, C is independent. Applying I3 to B′ and C we get an element
that we may add to B′ keeping it independent. If the new B′ is still not a basis,
we have |B′| < |B|, can pick a new C and repeat the argument. Eventually
|B′| = |B| with I ∪ e ⊆ B′ and B′ independent. Hence B′ 6= B is a basis and
we must show that it has maximal weight. Because both B and B′ are bases
they have the same size and by construction only |B|+ 1 elements are involved
in total. Therefore B′ \ B = {e}. By counting cardinalities, B \ B′ = {j} for
some j. Hence B′ = B \ {j} ∪ {e}.

Notice that w(j) ≤ w(e). (If we had w(j) > w(e) we would have included
j in I earlier because j ∈ B ⊇ I and j 6∈ B′ ⊇ I, making I ∪ {j} independent.
This contradicts j 6∈ I.)

We conclude:

w(B′) = w(B) + w(e)− w(j) ≥ w(B).

Hence B′ works as a choice of independent set containing I ∪ {e}. (Hint:
transversal matroids.)

When the algorithm terminates, it is because I is a basis. But then I ⊆ B
with the weight of B being maximal. Because we have no strict inclusion among
bases, I = B. This is an independent set of maximal weight. 2

Exercise 2.8.3 In what sense is Algorithm 1.3.9 a greedy matroid algorithm?
(Hint: transversal matroids.)

By an independence system with ground set S we mean a set I of subsets
of S, such that matroid axioms I1 and I2 are satisfied. An example is the set
of matchings in a graph.
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We could try to apply the greedy algorithm to any independence system.
However, that will not always work. For example the set of matchings of the
graph to the left in Figure 11 is an independence system. Applying the greedy
algorithm would wrongly produce a matching with weight 3. We conclude that
the independence system is not a matroid.

More surprising is the following theorem.

Theorem 2.8.4 [11, Theorem 10.34] Let M = (S, I) be an independence sys-
tem. If for every function w : S → R≥0 the greedy Algorithm 2.8.2 produces an
independent set with maximal w-weight, then M is a matroid.

Proof. It suffices to prove I3. Let A, B with |B| = |A| + 1. Choose x so that

0 ≤ |A|−|A∩B|
(|A|−|A∩B|)+1 < x < 1 and define w ∈ RS as follows:

wi :=


1 for i ∈ A
x for i ∈ B \A
0 otherwise

Running Algorithm 2.8.2 with weights w we will first pick the elements in A.
Suppose now for contradiction that there is no b ∈ B \A such that A∪{b} ∈ I.
Then the algorithm will return A. We have w(A) = |A| and w(B) = |A ∩B|+
(|A|+ 1− |A ∩B|)x. Consequently,

w(A)−w(B) = |A|−|A∩B|−(|A|+1−|A∩B|)x < |A|−|A∩B|−(|A|−|A∩B|) = 0,

where the inequality follows from |A| − |A ∩B| < x((|A| − |A ∩B|) + 1). This
contradicts the algorithm always picking a max-weight independent set. 2

2.9 Rado’s generalisation of Hall’s Theorem

For a matroid (S, I) of a matrix, there is a natural notion of rank of a subset I ⊆
S, namely the rank the submatrix with columns indexed by I. We generalise
this notion to any matroid.

Definition 2.9.1 Let (S, I) be a matroid. We define the rank ρ(I) of a subset
I ⊆ S as

ρ(I) = maxA⊆I:A∈I |A|.

We wish to make a generalisation of Hall’s theorem for matroids.

Definition 2.9.2 Let G[X,Y ] be a bipartite graph. The deficiency is defined
as

σ(G) = maxA⊆X(|A| − |N(A)|).

By taking A = ∅ we see that the deficiency is always non-negative.

Remark 2.9.3 Notice that if we add a vertex to Y and introduce edges from
it to all vertices of X, then the deficiency drops by 1.
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We will prove that the deficiency is what we lack from having all vertices in
X matched. The following is a strong version of Theorem 1.2.20.

Theorem 2.9.4 The matching number of a bipartite graph satisfies

α′(G) = |X| − σ(G)

Proof. For every set A we have α′(G) ≤ |X| − (|A| − |N(A)|). This proves

α′(G) ≤ |X| − σ(G).

For the other inequality we must prove that G has a matching of size |X|−σ(G).
Let G′ be G[X,Y ] but where we have repeatedly σ(G) times added a new vertex
to Y as in Remark 2.9.3. The deficiency of G′ is zero by the remark, implying
|A| − |N(A)| ≤ 0 for every A ⊆ X. By Hall’s Theorem 1.2.20, there exists a
matching M in G′ covering all vertices of X. Restricted to G, this matching
will have size at least |X| − σ(G). This proves α′(G) ≥ |X| − σ(G). 2

Exercise 2.9.5 How would you deduce Hall’s Theorem 1.2.20 from Theo-
rem 2.9.4?

We may rephrase the statement of Theorem 2.9.4 as

α′(G) = minA⊆X(|X|+ |N(A)| − |A|)

which we will now generalise to matroids.
Let S1, . . . , Sm be a partition of S. A partial system of representatives

(p.s.r.) is a subset of S such that it contains at most one element from each Si.
The set of partial representatives is a matroid.

Theorem 2.9.6 (Rado) Let M = (S, I) be a matroid. The maximal size of
an M -independent p.s.r. is

minA⊆{S1,...,Sm}(|S|+ ρ(
⋃
A)− |A|).

where
⋃
A is the union of sets in A.

We will not prove Rado’s Theorem. Rather, we observe that Hall’s theorem is a
special case of Rado’s. Given a graph G[X,Y ] with edge set E, take S = E and
partition S into |X| groups according to which vertex ofX the edges are incident
to. Take M = (S, I) to be the matroid where a subset of edges is independent
if each vertex of Y is covered at most once by the set. Then ρ(

⋃
A) = |N(A)|.

Finally, a partial system of representatives is independent in M if and only if it
is a matching in G[X,Y ]. This explains how Hall’s Theorem 2.9.4 follows from
Rado’s Theorem.
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2.10 Matroid intersection

Exercise 2.10.1 Let S be the disjoint union of S1, . . . , Sk and let d1, . . . , dk ∈
N. Let I ⊆ S be independent if for all i, |I ∩ Si| ≤ di. Prove that this defines a
matroid. This matroid is called a partition matroid.

Exercise 2.10.2 Let G[X,Y ] be bipartite graph with edges E. We say that
I ⊆ E is independent if each x ∈ X is covered by at most one edge from I.
Prove that this defines a partition matroid.

Exercise 2.10.3 Given a bipartite graph G[X,Y ] with edges E. Is the set of
matchings in G a matroid on the ground set E?

Let G[X,Y ] be a bipartite graph with edges E. We observe that M ⊆ E is
a matching if and only if it is independent in the matroid of Exercise 2.10.2
and in the matroid of Exercise 2.10.2 where Y is considered instead of X.
However, these matchings do not form the independent sets of a matroid by
Exercise 2.10.3. We conclude that the intersection of two matroids is not a
matroid.

What is meant by matroid intersection of two matroids (S, I1) and (S, I2)
is finding a set I ∈ I1∩I2 with largest cardinality |I| (or if a weight function w
is given, one with largest weight w(I)). By the observations in the paragraph
above, if we are able to find such largest sets in the intersection of two partition
matroids, we can easily solve the maximum bipartite matching problem. Other
applications of matroid intersection are given in the following subsections.

2.10.1 Matroid intersection is difficult (NP-hard) for three matroids

A Hamiltonian path in a G graph is subgraph of G being a path involving all
vertices of G. Similarly a Hamiltonian path in a directed graph G is a directed
path in G involving all vertices. Deciding if a graph (directed or undirected)
has a Hamiltonian path is difficult. (It is NP-hard).

If we were able to do matroid intersection of three matroids quickly, then
the following algorithm could be used to check for directed paths.

Algorithm 2.10.4
Input: A directed graph G = (V,E) and vertices s 6= t
Output: “yes” if there exists a directed path from s to t of length |V | − 1 and
“no” otherwise

• Construct a matroid M1 = (E, I1) being the partition matroid with inde-
pendent sets being subsets of E with at most zero outgoing edges from t
and at most 1 outgoing edge from each of the vertices in V \ {t}.

• Construct a matroid M2 = (E, I2) on E being the partition matroid with
independent sets being subsets of E with at most zero in-going edges to s
and at most 1 in-going edge to each of the vertices in V \ {s}.

• Let M3 = (E, I3) be the cycle matroid of the underlying undirected graph
of G.
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• Let I be a set of largest size in I1 ∩ I2 ∩ I3.

• If |I| = |V | − 1 then return “yes”, otherwise return “no”.

In the algorithm we would not actually store I1, I2 and I3, but rather present
them by oracles.

Exercise 2.10.5 Prove that the algorithm is correct.

Exercise 2.10.6 How do we decide if a set is independent in each of the three
matroids above?

Exercise 2.10.7 How would you use Algorithm 2.10.4 to decide if a (un-
directed) graph has a Hamiltonian path?

Exercise 2.10.8 Can we make a similar algorithm checking if a graph has a
Hamiltonian cycle?

We conclude that matroid intersection for three matroids is difficult. (It is
NP-hard.)

2.10.2 Matroid intersection for two matroids

Edmonds proved that matroid intersection of two matroids can be done in poly-
nomial time. We will not present an algorithm here but rather refer to [10],
where the matroid intersection of two matroids is reduced to finding a partial
system of representatives (in the sense of Rado’s Theorem 2.9.6) for a parti-
tion and a matroid. That problem is then shown to have a polynomial time
algorithm.

Another reason for not presenting a matroid intersection algorithm here is
that that is done in the mixed integer programming class.

Remark 2.10.9 A final comment on matroid intersection is that the problem
is closely related to the famous P 6=NP problem. If there is a polynomial time
algorithm for intersecting three matroid, then P=NP. We have not defined what
P and NP are. Neither were these classes defined when Edmonds first asked
whether the travelling salesman problem could be solved in polynomial time.
Cook stated the precise P 6=NP conjecture in 1971.

Exercise 2.10.10 What is the travelling salesman problem? What kind of
(weighted) matroid intersection algorithm would be needed to solve it?

Exercise 2.10.11 In a graph G where the edges have colours, how would you
decide, using matroid intersection of two matroids, whether there is a spanning
tree of G with exactly 5 yellow, 4 red and 3 blue edges (and possibly edges of
other colours)? (Hint: use a cycle matroid and a partition matroid with ground
set E(G)).
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Exercise 2.10.12 In Exercise 1.1.3 we observed that it is not obvious if class
scheduling with more than one class can be solved by solving matching prob-
lems. Is it possible to solve the multi-class scheduling problem using (weighted)
matroid intersection problems of three partition matroids, if the students for
example should attend six activities during the week?

2.10.3 Completing this section....

If we have more time, our section on matroid intersection can be completed in
one of two ways:

Matroid partitioning Edmonds’ matroid intersection cardinality algorithm
can be realised by solving the matroid partitioning problem.

Reduction of Hamiltonian path A result by Fukuda, Liebling and Margot
(1997) shows that it is possible to solve the Hamiltonian path problem
by solving an “Optimal vertex in a polyhedron”-problem, which strangely
enough looks a lot like a linear programming problem. How can that be?

2.11 A max cardinality matroid intersection algorithm

Recall that the intersection of two matroids might not be a matroid.

Example 2.11.1 If we have two matroids M1 = (S, I1) and M2 = (S, I2) given
by independence oracles we are interested in finding I ∈ I1∩I2 with |I| largest.
Our approach will be as in Egerváry’s Algorithm 1.3.9. That means that we
start with a set I with |I| = 0 and try to make it one larger at a time by making
a symmetric difference with some set.

Suppose I ∈ I1 ∩ I2 and we have some a ∈ S \ I such that I ∪ {a} ∈ I1. If
I ∪{a} is also independent in M2, then we have found an common independent
set with |I| + 1 elements as desired. If I ∪ {a} 6∈ I2, then we may look for
a sequence of pairs (a1, b1), . . . , (ap, bp) where ai 6∈ I 3 bi for all i such that
I ∪{a}\{b1}∪{a1}, . . . , \{bp}∪{ap} ∈ I2. At the same time we wish to ensure
that the set is also in I1.

It turns out that this problem can be solved by finding a directed path in a
certain graph. The key step is to observe that we from the information like:

I ∪ {a} ∈ I

I \ {b1} ∪ {a1} ∈ I and I ∪ {a1} 6∈ I

can conclude Check this!!!

I ∪ {a} \ {b1} ∪ {a1} ∈ I.

From Nemhauser and Wolsey we get the following proposition and provide a
new proof:
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Proposition 2.11.2 Let M = (S, I) be a matroid, I ∈ I and consider two
lists of distinct elements a1, . . . , ap 6∈ I and b1, . . . , bp ∈ I. Suppose that

∀i : I ∪ {ai} \ {bi} ∈ I

and
∀i, j with i < j : I ∪ {ai} \ {bj} 6∈ I

then
∀i, j : I ∪ {ai, . . . , aj} \ {bi, . . . , bj} ∈ I.

Proof. The proof is by induction in j− i, where we simultaneously with proving
our result also prove for valid choices of offsets 0 < d1 ≤ d2 ≤ · · · ≤ di−j+1 that

I ∪ {ai, . . . , aj} \ {bi+d1 , . . . , bj+dj−i+1
} 6∈ I. (6)

For the induction start we have i = j and the two claims (the statement of
the proposition and the claim above) are just restatements of our assumptions.

For the induction step we have j > i and first prove (6) by supposing that

J := I ∪ {ai, . . . , aj} \ {bi+d1 , . . . , bj+dj−i+1
} ∈ I.

Then J \ {aj} is independent and combined with the assumed I ∪ {aj−1} \
{bj−1} ∈ I matroid axiom I3 gives

K := I ∪ {ai, . . . , aj−1} \ {bi+d1 , . . . , bj+dj−i
} ∪ {b} ∈ I

where b cannot be aj−1 and must be one of the removed b’s. This, however,
contradicts the induction hypothesis (6) (since bi ∈ K).

For the claim of the theorem, observe I ∪ {ai, . . . , aj−1} \ {bi, . . . , bj−1} ∈
I and I ∪ {ai+1, . . . , aj} \ {bi+1, . . . , bj} ∈ I. Therefore I ∪ {ai, . . . , aj−1} \
{bi, . . . , bj} ∈ I and applying axiom I3 to this and the second set, we get that

I ∪ {ai, . . . , aj} \ {bi, . . . , bj} ∈ I or I ∪ {ai, . . . , aj−1} \ {bi+1, . . . , bj} ∈ I.

The second possibility is impossible by the induction hypothesis. 2

In its immediate form the proposition is not applicable to our problem
(because it speaks about independent sets of equal number of elements), so we
convince ourselves about the following variant:

Corollary 2.11.3 Let M = (S, I) be a matroid, I ∈ I and consider two lists
of distinct elements a1, . . . , ap, ap+1 6∈ I and b1, . . . , bp ∈ I. Suppose that

I ∪ {ap+1} ∈ I and ∀i ≤ p : I ∪ {ai} \ {bi} ∈ I and I ∪ {ai} 6∈ I (7)

and
∀i, j with i < j : I ∪ {ai} \ {bj} 6∈ I (8)

then
I ∪ {a1, . . . , ap+1} \ {b1, . . . , bp} ∈ I.
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Proof. We apply the proposition to a matroid M ′ with ground set S ∪ {bp+1}
where bp+1 is a new element and a set I is independent in M ′ if and only if
I \ {bp+1} is independent in M . The sequences a1, . . . , ap+1 and b1, . . . , bp+1

now satisfy the proposition. Therefore I ∪ {a1, . . . , ap+1} \ {b1, . . . , bp+1} is
independent in M ′. Consequently I∪{a1, . . . , ap+1}\{b1, . . . , bp} is independent
in M .2

Exercise 2.11.4 Prove that the matroid M ′ of the proof is indeed a matroid.

We now associate a graph to the problem of extending I ∈ I1 ∩ I2 to an
independent set in both matroids.

We define a directed bipartite graph G[I ∪ {β, β′}, Ic]. For I1 we add arcs:

• (bi, ai) ∈ I × Ic whenever I ∪ {ai} \ {bi} ∈ I1

• (β, ai) ∈ {β} × Ic whenever I ∪ {ai} ∈ I1

For I2 we add arcs:

• (ai, bi) ∈ Ic × I whenever I ∪ {ai} \ {bi} ∈ I2

• (ai, β
′) ∈ Ic × {β′} whenever I ∪ {ai} ∈ I2

Example 2.11.5

The key observation now is that if P = (β, ap+1, bp, . . . , a1, β
′) is a shortest

directed (β, β′)-path then the follow holds:

• The conditions of the corollary is satisfied. This is immediate for (7), while
(8) follows from P being shortest. Hence I4{a1, b1, . . . , ap, bp, ap+1} ∈ I1.

• Reversing arrows in G would be the same as exchanging I1 and I2 in the
construction of G. Therefore also I4{a1, b1, . . . , ap, bp, ap+1} ∈ I2.

We conclude that if there is a directed (β, β′) path in G then I1 ∩ I2 has an
element af size |I + 1|.

Our discussion leads to the following algorithm:

Algorithm 2.11.6 (Max Cardinality Matroid Intersection)
Input: A set S and independence oracles for two matroids M1 = (S, I1) and
M2 = (S, I2).
Output: A set I ∈ I1 ∩ I2 with |I| maximal.

• Let I := ∅

• Repeat the following

– Construct the graph G[I ∪ {β, β′}, Ic].
– Find a shortest directed (β, β′)-path in G — if none exists terminate

the algorithm with output I.

– Let I := I4(V (P ) \ {β, β′}).
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Remark 2.11.7 We have not yet argued for the correctness of the algorithm.
Namely, we need a proof that when no (β, β′)-path is found, then it is because
it is not possible to improve |I|. We will not present such proof in these notes.

Remark 2.11.8 We can bound the number of oracle calls needed to build up
the graphs by a constant times |S|3. Similarly we could bound the time needed
to find the shortest paths.

Remark 2.11.9 There also exists algorithms for the weighted matroid inter-
section problem.
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3 Optimum branching

3.1 Optimum branching

Definition 3.1.1 Let G = (V,E) be a directed graph with a weight function
w : E → R. A subset B ⊆ E is a branching if

• B contains no cycle

• each vertex has at most one in-going arc from B.

Our goal is to compute a branching with maximal weight. We call such a
branching an optimum branching.

Example 3.1.2 Consider the graph in Figure 31. An optimum branching is
also shown. It has weight 33. Notice that this is not a max-weight spanning
tree in the underlying undirected graph.

The algorithm we present was first discovered by Yoeng-jin Chu and Tseng-
hong Liu in 1965 and then independently by Edmonds in 1967. It is often
referred to as Edmonds’ Algorithm. The presentation given here is based on
Karp [5] and partly [11].

Before we can present the algorithm and its proof, we need some definitions
and lemmas.

Definition 3.1.3 In the setting above. An arc e ∈ E is called critical if

• w(e) > 0 and

• for every other arc e′ with the same head as e we have w(e) ≥ w(e′).

We notice that if e is not a critical arc of G, then it is still possible that we
need it for an optimum branching. (Take a directed three-cycle with weight 2
for each arc and additionally an arc of weight 1 going from a vertex outside the
cycle to the cycle.)

2
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Figure 31: A directed graph with weights. An optimum branching for the graph
is indicated with bold edges. See Example 3.1.2.
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Figure 32: The graph of Example 3.1.4. The non-critical arcs have been re-
moved.

Example 3.1.4 In the example from before. The critical edges are shown in
Figure 32.

Notice that while the optimum matching in this case is a tree, it need not
be a tree in general. In that case the optimum branching will be a forest.

Definition 3.1.5 A subgraph H ⊆ E is called critical if

• each arc of H is critical, and

• no two arcs in H have the same head.

We are in particular interested in maximal critical subgraphs.18

Example 3.1.6 By leaving out three of the critical edges in our running ex-
ample, we get a maximal critical subgraph. See Figure 33.

Lemma 3.1.7 If a maximal critical subgraph H has no cycles, then it is an
optimum branching.

Proof. The subgraph H contains no cycles by assumption and each vertex has
in-degree at most 1 because H is critical. We conclude that H is a branching.

We now prove that H is optimum by observing that H chooses a largest
weight in-going arc at each vertex. We conclude that H has largest possible
weight among all branchings.2

Example 3.1.8 Our maximal critical subgraph contains two directed cycles.
Therefore the lemma cannot be applied. Observe that they have no edges in
common.

18In fact so interested that some people define critical graphs to always be maximal.
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Figure 33: We have removed three critical edges and obtained a maximal critical
subgraph.

Lemma 3.1.9 Let H ⊆ E be a critical subgraph with C1 and C2 different
subgraph being cycles. Then C1 and C2 share no vertices.

Proof. Suppose C1 and C2 shared a vertex v. Then the vertex v1 right before v
in C1 must be the same as the vertex v2 right before v in C2 because only one
arc from H has head v. We now continue to v1 = v2 with the same argument.
We conclude, since cycles are finite, that C1 = C2. 2

It is not difficult to prove, that each component of G contains at most one cycle.
Now fix a maximal critical subgraph H of G. Let C1, . . . , Ck be the cycles.

The following theorem allows us to restrict the search for an optimum branching.

Theorem 3.1.10 Let H be a maximal critical subgraph. There exists an opti-
mum branching B such that for every Ci we have |E(Ci) \ E(B)| = 1.

To not interrupt the presentation of the algorithm we postpone the proof until
later.

We now wish to transform G into a graph G′ by identifying all vertices in
C1 and replace them by a single vertex ui. Similarly for C2, . . . , Ck. We remove
loops when doing this identification.

We assign new weight w to the edges of G′.

• For e ∈ E(G) \ E(Ci) if the head of e is in Ci for some i, we let

w′(e) = w(e)− w(ẽ) + w(e0
i )

where ẽ is the unique edge in Ci with the same head as e and e0
i is an

edge in Ci with smallest weight.

• For all other e we let w′(e) = w(e).
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Figure 34: We have identified vertices in the two cycles and updated the weights
to obtain G′ and w′.

Example 3.1.11 In our running examples we identify the vertices in each of
the two cycles and obtain the graph in Figure 34. That some of the edges are
dotted should be ignored for now.

Theorem 3.1.12 Let B be an optimum branching for G with weights w and
B′ an optimum branching for G′ with weights w′ as defined above. Then

w(B)− w′(B′) =
k∑

i=1

w(Ci)−
k∑

i=1

w(e0
i ).

Moreover, an optimum branching for G can be obtained from B′.

We postpone the proof until later, and rather illustrate the theorem on our
example.

Example 3.1.13 After staring at the graph of Figure 33 we observe that it
has an optimum branching B′ of w′ weight 13. It is indicated with bold edges.
The formula of the theorem now holds because

33− 13 = (8 + 18)− (1 + 5).

We get a branching in the original graph by for each cycle, extending B′ with
all but one of the edges in C1 and all but one of the edges in C2. We do this
in such a way that for the first cycle C1 with no in-going edges in B′, we add
all but the smallest weight edge of C1. For cycle C2 we add the edges which do
not have head equal to the vertex of C2 already being a the head of an arc in
B′.

This gives rise to the algorithm
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Algorithm 3.1.14 (Optimum branching)
Input: A graph G with a weight function w → R.
Output: An optimum branching B in G.

• Find the subgraph K of critical arcs.

• Let H be a maximal critical subgraph of K obtained by dropping an arc
whenever two arcs have the same head.

• If H contains no cycles

– then return B := H.

else

– Find the cycles C1, . . . , Cn in H.

– Produce the graph G′ and w′ as defined above (ui’s are new vertices).

– Recursively compute an optimum branching B′ on the smaller graph
G′ with weights w′.

– Construct B by taking all edges in B′. Besides these we take for each
Ci all arcs except one:

∗ If no arc of B′ ends at ui leave out a lowest w-weight arc from
Ci.

∗ else let (a, b) ∈ E(G) denote the arc inducing the arc ending at
ui. Leave out the arc of Ci with head b.

– Return B.

The correctness of the algorithm follows from Theorem 3.1.12.

Exercise 3.1.15 Complete the computation of the optimum branching of Ex-
ample 3.1.2 by running the algorithm on the graph in Figure 34.

Definition 3.1.16 Consider a branching B in a directed graph G = (V,E).
An edge e ∈ E \B is called eligible if

(B \ {(u, v) ∈ B : v = head(e)}) ∪ {e}

is also branching in G.

Lemma 3.1.17 An edge e = (s, t) ∈ E \ B is eligible if and only if there does
not exist a directed (t, s)-path in B.

Proof. Because other arcs going to head(e) are explicitly removed, the only
obstacle for

(B \ {(u, v) ∈ B : v = head(e)}) ∪ {e}

being a branching is that it contains a cycle. However, that happens if and only
if it contains a directed (t, s)-path, which happens if and only if B contains one.
2
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t2
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Figure 35: The cycle in the proof of Lemma 3.1.18.

Lemma 3.1.18 Let B be a branching in a directed graph G = (V,E) and C a
directed cycle in G. If no edge from C \B is eligible then |C \B| = 1.

Proof. We cannot have |C \ B| = 0, since then C ⊆ B and B would not be a
branching.

Now we prove that we cannot have |C \ B| = 2 with all edges non-eligible.
In Figure 35 the situation with the cycle C has been drawn. We have drawn
also the arcs from B which are in C. In this picture there are six such arcs. The
two which we are assume are eligible are (s1, t1) and (s2, t2). By Lemma 3.1.17,
there exists a (t1, s1)-path in B which, because of B being a branching, must
follow the path from t2 to s1 in C. Similarly there is a (t2, s2)-path in B. But
now inside B we find a path from t2 to t1 and one from t1 to t2. We conclude
that B contains a directed cycle. This is a contradiction.

The proof that |C \B| 6= k for all k > 2 works the same way. We leave out
the proof here. 2

Proof of Theorem 3.1.10. Let B be an optimum branching. Assume that B
contains as many edges from the maximal critical graph H as possible. By
Lemma 3.1.18 it suffices to prove that no arc from H \ B is eligible. If some e
was eligible, then introducing it

(B \ {(u, v) ∈ B : v = head(e)}) ∪ {e}

would give a branching with one more arc from H (because an arc which is
removed cannot be in H because H is a critical graph already containing e). It
would also be optimum because substituting e cannot lower the weight of the
matching because it is critical. That we now have an optimum branching with
more edges from H than B contradicts the assumption on B. We conclude that
no edge is eligible as desired. 2
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We notice that the optimum branching of Theorem 3.1.10 can also be chosen
to satisfy that if there is no arc from B entering a cycle Ci then Ci \B = {e0

i }.
We are now ready to prove Theorem 3.1.12.

Proof of Theorem 3.1.12. Let B be an optimum branching satisfying the con-
dition of Theorem 3.1.10. We construct a branching B′ in G′ of weight

w′(B′) = w(B)−
k∑

i=1

w(Ci) +
k∑

i=1

w(e0
i )

proving that any optimum branching has at least this weight.
To construct B′, simply restrict B to G′ in the natural way. The effect of

collapsing Ci is that the weight drops by (passing from w weight to w′ weights):

• w(Ci)− w(e0
i ) if there is no arc in B ending at Ci

• w(Ci)− w(ẽ)− (w(ẽ)− w(e0
i )) = w(Ci)− w(e0

i ) otherwise

Summing for all cycles, we get a drop by
∑k

i=1w(Ci)−
∑k

i=1w(e0
i ) as desired.

Now let B̃′ be and optimum branching of G′. We wish to construct an
optimum branching B̃. This is done as in Algorithm 3.1.14. The effect is now
the opposite as above. We conclude that there is a branching of weight

w(B̃) = w′(B̃′) +
k∑

i=1

w(Ci)−
k∑

i=1

w(e0
i )

and that any optimum branching must have at least this weight.
By optimality, w′(B̃′) ≥ w′(B′) and w(B) ≥ w(B̃). Combining our two

inequalities and two equations we get the conclusion of the theorem

w(B)− w′(B̃′) =
k∑

i=1

w(Ci)−
k∑

i=1

w(e0
i )

for optimum branchings B and B̃′. 2

Exercise 3.1.19 Consider a town without central water supply. We want to
install water towers and pipes. The town has certain important sites v1, . . . , vn
which we represent by vertices in a directed graph G. We want to connect all
these sites to a water tower. Furthermore we suppose that we can install a water
tower at any of these sites at the expense of K for each tower. An alternative to
installing a water tower at a site is connecting it to another site with pipes. If a
connection with water flowing from site u to site v is possible, then G will have
the arc (u, v). The expense of installing a pipe taking water from u to v is given
by a weighting w : E → R. We assume that the directed graph G = (V,E) is
connected. We want to determine an optimal way of connecting the sites with
pipes or installing towers, so that the cost is minimised.
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Figure 36: The map of the town in Exercise 3.1.19. The expense of installing a
pipe along an arc is indicated. The expense of building a water tower is 3.

• Prove that the problem we want to solve is

minH⊆E(w(H) + (|V | − |H|)K)

where H is restricted to cycle-free subgraphs with at most one in-going
arc for each vertex.

• Formulate this as an optimum branching problem.

• Find an optimal choice of locations for water towers in the graph of Fig-
ure 36.

• Can we also phrase the problem as an optimum branching problem if each
tower has different cost to build?

Remark 3.1.20 The problem above becomes much harder when the towers
are allowed to be located in between the specified sites. Look up Steiner trees
for more information.

Exercise 3.1.21 Is the set of cycle free subgraphs of a directed graph (V,E)
the independent sets of a matroid (with ground set E)?

Exercise 3.1.22 Can we phrase the optimum branching problem as a weighted
matroid intersection problem for two matroids (Hint: be inspired by the Hamil-
tonian path problem formulated as an intersection of three matroids)?
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4 Colourings

Let G = (V,E) be a graph and k ∈ N. By a k-vertex colouring of G we mean
a function c : V → C with C being a set of “colours” with |C| = k. We think
of the function as assigning colours to the vertices of G. The book [4] provides
a long list of open problems involving graph colourings.

A vertex colouring is called proper if for all e = (u, v) ∈ E we have c(u) 6=
c(v). A graph is called k-vertex colourable if there exists a proper k-vertex
colouring of G. The (vertex) chromatic number χ(G) is the smallest number k
such that G is k-vertex colourable.

Similarly, we can colour edges. A k-edge colouring of a graph is a function
c : E → C where C is a set of “colours” with |C| = k. We think of the function
as assigning colours to the edges of G. An edge colouring is called proper if
for every vertex v, the edges incident to v have different colours. Moreover, we
require G to have no loops. A graph is called k-edge colourable if there exists
a proper k-edge colouring G. The edge chromatic number χ′(G) is the smallest
number k such that G is k-edge colourable.

Example 4.0.1 The graph G of Figure 30 has χ(G) = 3 = χ′(G). Usually the
vertex chromatic number and edge chromatic number are different.

4.1 Vertex colourings

Let G = (V,E) be a graph. We define ∆ = maxv∈V d(v) to be the maximal
degree of any vertex in G.

Theorem 4.1.1 Every simple graph is ∆ + 1 colourable.

Proof. Let V = v1, . . . , vn. First assume that the vertices have no colours. We
now iteratively assign colours to the vertices. For i = 1, . . . , n, we consider the
neighbours of vi. There are at most ∆ of them and therefore there is at least
one colour left to colour vi. Continuing like this we colour all vertices of the
graph such that no two neighbours have the same colour. 2

It is necessary that the graph is simple for the theorem to hold. If the graph
contains a loop, then the vertex with the loop cannot be assigned a colour.

Example 4.1.2 We have χ(Kn) = ∆ + 1 because for a complete graph n =
∆ + 1 and each vertex needs a different colour.

Example 4.1.3 If G is an odd cycle of length at least 3 then χ(G) = 3 = ∆+1.

Remark 4.1.4 Consider a graph G with a proper vertex colouring. Let 1 and
2 be two colours. A restriction of G to the vertices of colours 1 and 2 can have
several components. Let C be one of them. We can get a new proper colouring
of G by exchanging the colours 1 and 2 in the component C. Such recolourings
will be useful in the proof of the next theorem.
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Theorem 4.1.5 (Brooks) Let G be a connected simple graph. If G is not a
cycle and not a complete graph then G is ∆-colourable.

The following proof of Brooks’ Theorem was originally given in [9] but also
appears in [11].

Proof. First observe that the theorem is true for ∆ = 0, 1, 2.
Suppose now that the theorem did not hold in general. Then there would

exist a graph G which is not a complete graph, not a cycle and not ∆-colourable,
but after removing any vertex it will be one of these. Choose a vertex v ∈ V
to remove. We prove that G′ = G \ {v} is ∆-colourable. If ∆(G′) < ∆(G) this
follows from Theorem 4.1.1. If ∆(G′) = ∆(G) we have ∆(G′) ≥ 3 and G′ is not
a cycle. If G′ was complete then G could not be connected.

If v had fewer than ∆ neighbours in G then G′ would also be ∆-colourable,
which is a contradiction. Therefore v has exactly ∆ neighbours v1, . . . , v∆.

Observation 1: Any proper colouring ofG′ assigns different colours to v1, . . . , v∆.
If not, then G′ could be ∆-coloured.

Let’s now consider a particular ∆-colouring of G′. Define for i 6= j the induced
subgraphs Bij of G′ having only vertices with colours being those of vi and vj .
Let Cij be the component of Bij containing vi.

Observation 2: Both vi and vj belong to Cij . If vj is not in Cij then exchange
colours of vertices in Cij giving a new colouring of G′ contradicting Ob-
servation 1.

We now argue that Cij is a path between vi and vj . For this we must argue
that the degree of vi is 1 in Cij . If it was ≥ 2, then the neighbours of vi can
have at most ∆ − 1 different colours. But now we can properly recolour vi in
the colour of vj . This would contradict Observation 1. Clearly, since both v1

and v2 are in the connected component of Cij the degree cannot be zero. Hence
the degree of vi is 1. The same holds for vj . To prove that all other vertices
in Cij have degree 2, suppose not and let u be the first vertex starting from
vi where the degree was > 2. Then the neighbours of u have at most ∆ − 2
different colours. ∆-recolour u properly with a colour different from that of vi.
This new colouring would contradict Observation 2. Therefore Cij is a path
from vi to vj .

Observation 3: For i, j, k all different, Cij and Cik have only vi in common.
If they met at some other vertex u, this vertex must have the same colour
as vi. Of its at most ∆ neighbours, 4 have the colours equal to vj and
vk. Therefore it is possible to properly recolour u with a colour different
from those of vi, vj and vk. But in the new colouring vi and vj are not
connected in the new Cij , a contradiction to Observation 2.

Suppose now that G restricted to v1, . . . , v∆ was complete, then also G
restricted to v, v1, . . . , v∆ would be complete. But then that would be all of
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G since no vertex has degree higher than ∆ and G is connected. But G was
assumed not to be complete. Hence there exist non-adjacent vi and vj . Let
k be different from i and j. We now have paths Cij and Cik. Consider the
proper colouring where the colours along Cik have been swapped. The path
C ′jk of colour j, i goes along Cji until the last vertex before vi is reached. This
last vertex u must have colour j and therefore the path C ′ij of colour j, k must
involve u. However, now u is part of C ′ij and C ′jk, contradicting Observation 3.

We conclude that a minimal counter example does not exist. Therefore no
counter example exists and the theorem is true. 2

4.2 Chromatic polynomials

If we have a graph G, we may ask how many proper colourings it has. That of
course depends on how many colours we have.

Example 4.2.1 The number of proper λ vertex colourings of the complete
graph Kn is λ(λ − 1) · · · (λ − n + 1). An easy counting argument proves this.
For the first vertex we have λ choices, for the next λ− 1 and so on.

Example 4.2.2 Let G be the empty graph with n vertices and λ ∈ N. Then
G has exactly λn proper λ-vertex colourings, because for each vertex in G we
can choose its colour freely.

Let P (G,λ) denote the number of proper colourings of G with λ colours. We
will prove that for any fixed graph G, the function P (G,λ) is a polynomial
function. If is called the chromatic polynomial of the graph.

For a graph G and an edge e = (u, v) 6∈ E(G) we define:

• G ·e to be the graph where u and v have been identified and parallel edges
been replaced by a single edge.

• G+ e to be the simple graph G with e added.

Theorem 4.2.3 Let G be a simple graph. Let u, v ∈ V with e = (u, v) 6∈ E.
Then

P (G,λ) = P (G+ e, λ) + P (G · e, λ).

Proof. We simply observe:

• The set of proper λ-colouring of G with c(u) = c(v) is in bijection with
proper λ-colourings of G · e.

• The set of proper λ-colouring of G with c(u) 6= c(v) is in bijection with
proper colourings of G+ e.

2

Corollary 4.2.4 Let e = (u, v) be an edge in a simple graph G′ then

P (G′, λ) = P (G′ \ {e}, λ)− P (G′ · e, λ)

where G′ · e means (G′ \ {e}) · e.
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Proof. Simply apply the theorem to G = G′ \ {e}. 2

We now have a method to compute the function P (G,λ) for a given graph
G. We can either

• use the theorem repeatedly until we end up with complete graphs and
apply the formula we already know, or

• use the corollary repeatedly until we end up with empty graphs and apply
the formula we already know.

Example 4.2.5 In class we used the formula to compute the function for a
3-cycle with a single edge attached.

Theorem 4.2.6 Let G be simple graph with n vertices. The function P (G.λ)
is the function of a polynomial of degree n with leading term λn and constant
term 0. Moreover it has form

λn − an−1λ
n−1 + an−2λ

n−2 − · · · ± 0

with ai ∈ N = {0, 1, 2, . . . } meaning that coefficients have alternating sign, but
some coefficients can be zero.

Proof. Induction on the number of edges.
Basis: For the empty graph (no edges) we have P (G,λ) = λn.
Step: Suppose the theorem is true for graphs with fewer edges. Pick (u, v) ∈

E(G). Because a colouring of G \ {e} induces a colouring on either G or G · e
we have

P (G,λ) = P (G \ {e}, λ)− P (G · e, λ).

By induction (because |V (G \ {e})| = |V (G)| and |V (G · e)| = |V (G)| − 1) we
know

P (G \ {e}, λ) = λn − an−1λ
n−1 + an−2λ

n−2 . . . a1λ
1

P (G · e, λ) = λn−1 − bn−2λ
n−2 + bn−3λ

n−3 . . . b1λ
1

Subtracting the two expressions we get

P (G,λ) = λn − (an−1 + 1)λn−1 + (an−2 + bn−2)λn− 2 · · · ± (a1 + b1)λ

as desired. 2

Exercise 4.2.7 What are the chromatic polynomials of

• K4 with an edge removed?

• the graph being a disjoint union of two three-cycles: 4 4?

• the graph being two three-cycles sharing a vertex: 44?

• the connected graph with 4 vertices and 4 edges containing a three cycle?

78



• the graph 4 4 but with a vertex from each triangle joined by an edge (7
edges in total)?

• the graph 4 4 but with two vertices from one triangle joined by edges
to two vertices of the other (8 edges in total)?

Exercise 4.2.8 What is the colour chromatic number χ(G) of a graph G with
chromatic polynomial

λ6 − 8λ5 + 26λ4 − 43λ3 + 36λ2 − 12λ = λ(λ− 1)(λ− 2)2(λ2 − 3λ+ 3)?

4.3 Colourings of planar graphs

In this section we prove the 5-colouring Theorem 4.3.5.

Proposition 4.3.1 (Euler’s formula) Let G = (V,E) be a connected plane
graph with at least one vertex and with the complement of the graph in R2 having
r regions. Then

|V | − |E|+ r = 2

Proof. Let H be a spanning tree of G. Because the complement of H has only
one component and |V (H)| = |E(H)|+ 1 for a tree, the formula holds for H.

Now we add in edges one at a time. Adding an edge will increase the number
of regions by 1. After adding each edge, the formula still holds. At the end the
formula holds for G. 2

Recall the following basic theorem from the Graph Theory 1 course:

Theorem 4.3.2 For a graph G = (V,E) we have∑
v∈V

d(v) = 2|E|.

Corollary 4.3.3 [1, Corollary 10.21] Let G be a connected simple planar graph
with |V | ≥ 3 then

|E| ≤ 3|V | − 6

Proof. Fix an embedding G of G and let G∗ be the dual graph. Because G
is simple, connected and with at least 3 vertices, d(v) ≥ 3 for any vertex
v ∈ V (G∗). We have

2|E(G)| = 2|E(G∗)| =
∑

v∈V (G∗)

d(v) ≥ 3|V (G∗)| = 3(|E(G)| − |V (G)|+ 2)

where the first equation follows from definition of dual graphs, the second from
Theorem 4.3.2 and the last from Euler’s formula. We conclude that

|E(G)| ≤ 3|V (G)| − 6

as desired. 2
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From the three theorems above we deduce:

Corollary 4.3.4 Every planar simple graph has a vertex of degree ≤ 5.

Proof. We may assume that the graph is connected - if not just consider one
of its components. If every vertex had degree ≥ 6, Theorem 4.3.2 and Corol-
lary 4.3.3 give

6|V | ≤
∑
v∈V

d(v) = 2|E| ≤ 6|V | − 12,

which is a contradiction. 2

We can now prove the 5-colouring theorem using a strategy similar to that
of the proof of Brooks’ Theorem 4.1.5. The proof follows the structure of the
proof of [11, Theorem 9.12].

Theorem 4.3.5 (The 5-colouring Theorem) Every simple planar graph G
is 5-colourable.

Proof. We do the proof by induction on the number of vertices. If G has no
vertices, then it is 5-colourable.

For the induction step let G be a simple planar graph and consider a par-
ticular embedding of it in the plane. Pick v ∈ V (G) with d(v) ≤ 5. This
can be done because of Corollary 4.3.4. Let G′ := G \ {v}. By the induction
hypothesis, it is possible to properly colour G′ with the colours α1, . . . , α5.

If d(v) < 5 or not all five colours were used to colour the neighbours of v in
G, then we can properly colour G with five colours.

If d(v) = 5 and all neighbours of v have different colours, then assign names
to the neighbours v1, v2, v3, v4, v5 in such a way that the vertices are ordered
clockwise around v. We may without loss of generality assume that the colour
of vi is αi.

For i 6= j define Bij to be the subgraph induced by G′ on the vertices with
colours αi and αj . Let Cij be the component of Bij containing vi.

If vj ∈ Cij for all i, j, then there is a (v1, v3)-path inside C13. This paths
involves only colours α1, α3. There is also a (v2, v5)-path in C25. Because of
the “clockwise” assumption, the two paths must intersect. Because the graph
is plane, this can only happen at vertices. However, the colours of vertices of
C25 are α2, α5. This contradicts the colours of C13.

We conclude that for some i, j we have vj 6∈ Cij. We exchange the colours
αi and αj in Cij . This gives a new colouring of G′, but where at most 4 colours
are used to colour v1, . . . , v5. We extend this to a colouring of G by colouring
v with the colour αi. Hence G is 5-colourable. 2

The theorem can be made stronger.

Theorem 4.3.6 (The 4-colouring Theorem) Every simple planar graph G
is 4-colourable.
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Remark 4.3.7 The proof of the 4-colouring theorem is complicated and relies
on checking 1482 special cases. This was done on a computer by Appel and
Haken in 1977. At the time this was a controversial proof technique and it was
unclear whether this should count as a mathematical proof.

Exercise 4.3.8 Are computer proofs controversial today?

An interpretation of the 4-colouring theorem is that any map (with con-
nected countries) can be coloured with only 4 colours. Indeed consider the
plane graph of the boarders. Its dual graph is also plane and has a vertex for
each country. That a colouring of the countries is proper in this graph, now
means that any two neighbouring countries have different colour.

4.3.1 A failing approach to the 4-colouring Theorem

The following conjecture is false:

Conjecture 4.3.9 (Tait, 1884) Every 3-connected planar cubic graph G has
a Hamiltonian cycle.

If the conjecture was true, it would be easy to prove the 4-Colouring Theorem:
Let G be a planar graph and consider a particular embedding (Figure 37,

first picture). Without loss of generality we assume that G is connected. We
assume that the embedding is done with straight lines (Remark 2.1.3 – why are
parallel edges not a problem?). We add edges to G to a obtain a plane graph
G′ where all the faces are triangles. We now add three new vertices u1, u2, u3

to the vertex set so that the convex hull of these contains G′ in its interior. We
now further add edges to G′ to obtain a graph F with all faces being triangles
- also the outer one (Figure 37, second picture). To show that G has a proper
4-colouring, it suffices to show that the larger graph F has a proper 4-colouring.

Because F is a plane graph it has a well-defined dual graph F ∗. Because
the faces of F are triangles, the dual graph F ∗ is cubic. We can assume that it
is also 3-connected (Exercise 4.3.12). Tait’s conjecture gives us that F ∗ has a
Hamiltonian cycle H (Figure 37, third picture). The embedding of H divides
the plane into an inner and outer region – thereby dividing the vertex set of F
into two non-empty sets Vinner and Vouter (Figure 37, fourth picture). Consider
F [Vinner] and F [Vouter]. These graphs are cycle-free: if F [Vinner] contained a
cycle C, that cycle would surround a triangular face of F whose dual vertex
would be connected by the Hammilton cycle which will leave C crossing an
edge whose ends consequently cannot both be in Vinner contradicting that C ⊆
F [Vinner]. A similar argument works for F [Vouter]. Cycle free graphs are trees
and therefore have proper 2-colourings. Using two disjoint pairs of colours for
F [Vinner] and F [Vouter] we get a proper 4-colouring of F . This is also a proper
4-colouring of the subgraph G, supposedly proving the 4-colour Theorem.

Exercise 4.3.10

• What does it mean to be cubic?
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Figure 37: Various steps in the Tait “proof”. All that remains in the last
picture is to properly colour the light gray and dark gray vertices with two pais
of different colours.

• What does it mean to be 3-connected?

• Find a planar cubic graph G that is not 3-connected and does not contain
a Hamiltonian cycle.

Exercise 4.3.11 Why are parallel edges not a problem in the proof above?

Exercise 4.3.12 Is it really true that the graph F ∗ mentioned above is 3-
connected? How do we fill the gap?

Unfortunately Tait’s conjecture is false. This was proved by Tutte in 1946. We
go through the proof in the following exercise.

Exercise 4.3.13 Consider the graph G in Figure 38. We wish to prove that
there can be no Hamiltonian path from vertex u to vertex v in the graph.
Choose according to your ZIP code: Prove that there is no Hamiltonian path
from u to v...

8000-8099: including both edge a and c.

8100-8199: including both edge a and d.

8200-8299: including both edge b and c.

8300-8399: including both edge b and d.
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Figure 38: A Tutte fragment

Figure 39: Three Tutte fragments forming a cubic graph without a Hamiltonian
cycle

Conclude that there is no Hamiltonian path in G starting at u and ending at
v. The graph G is called a Tutte fragment. Now we compose 3 such graphs to
obtain the graph F in Figure 39. Argue that F does not have a Hamiltonian
cycle, thereby proving that Tait’s conjecture is false.

4.4 An open colouring problem

For every subset V ⊆ R2 we may define its unit distance graph UV := (V,E)
where

E = {(u, v) ∈ R2 × R2 : d(u, v) = 1}

Here d(u, v) denotes the usual euclidean distance between the points u and v
in the plane.

Example 4.4.1 A simple example would be to take V = {(0, 0), (1, 0)}, getting
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a the complete graph on 2 vertices.

Example 4.4.2 The unit distance graph of

V = {(1

2
,
1

2
), (−1

2
,
1

2
), (

1

2
,−1

2
), (−1

2
,−1

2
)}

is a 4-cycle.

Exercise 4.4.3 What is the unit distance graph of

V = {(1

2
, 0), (−1

2
, 0), (0,

√
3

2
), (0,−

√
3

2
)}?

Exercise 4.4.4 Prove that for any n > 2, the n-cycle Cn is a unit distance
graph of some V ⊆ R2.

Exercise 4.4.5 Prove that the Petersen graph is a unit distance graph UV for
a suitable choice of V ⊆ R2.

In this section we will investigate a particular unit distance graph, namely
the infinite unit distance graph of V = R2. This graph has an infinite number
of vertices and edges and every vertex has infinite degree.

The Hadwiger-Nelson problem [4] is to answer the following question:

• What is the chromatic number of UR2?

The answer to this question is unknown, but it is either 5, 6 or 7. We will
not be able to prove this, but we will prove that the answer is either 4, 5, 6 or
7.

(Note that UR2 is not necessarily a planar graph – if it was the chromatic
number would be at most 4 by Theorem 4.3.6).

Exercise 4.4.6

• Find a drawing of the 10-vertex, 18-edge Golomb graph G on the internet.

• Why is G a unit distance graph?

• Find a proper 4-colouring of G.

• Prove that G has no proper 3-colouring.

• Prove that the chromatic number of UR2 is at least 4.

Exercise 4.4.7

• Can we use that det((2, 1), (−1, 3)) = 7 to argue that the parallellogram
conv((0, 0), (2, 1), (−1, 3), (1, 4)) has has 6 interior lattice points?

• Use f : Z2 → Z, f(x, y) = x+ 5y to construct a 7-colouring of the graph
(Z2, E) with the property that the distance (measured in edges) between
any two vertices with equal colour is at least 3, where

E = {(u, v) ∈ Z2 × Z2 : u− v ∈ {±e1,±e2,±(e1 − e2)}}.
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Figure 40: A collection of simplices forming a triangulation and a collection not
forming a triangulation. See Example 4.5.1.

• Use regular hexagonal tiles with side length 1
2 − ε to tile R2 (with ε > 0

being a small number), so that the ends of any edge of UR2 must belong
to different tiles.

• Inspired by the earlier vertex colouring, assign a colour to each of the
tiles, so that no two tiles of the same colour have a common neighbouring
tile.

• Prove that the colouring is in fact a proper 7-colouring of UR2 .

From the above exercises we conclude that the chromatic number of UR2 is
either 4, 5, 6 or 7.

Exercise 4.4.8 Who is Aubrey de Grey?

4.5 Sperner’s Lemma

A d-simplex in Rn is the convex hull of d+ 1 affinely independent vectors. Let
P ⊆ Rn be a convex polytope. A triangulation of P is a finite collection ∆ of
simplices in Rn such that

• P =
⋃

S∈∆ S and

• S1 ∩ S2 is face of S1 (and of S2) for any S1, S2 ∈ ∆.

Example 4.5.1 The collection of the 3 simplices in Figure 40 (left) is a trian-
gulation, while the collection of the 4 simplices to the right is not.

If we take a polytope P and a collection of finite collection of points V ∈ P
including the vertices of P , it is possible to find a triangulation of P where the
union of the set of vertices of the simplices equals V . (How?)

The graph of such triangulation ∆ is (C,E) where (u, v) ∈ E iff the convex
hull conv(u, v) is an edge of one of the simplices in ∆.

Sperner’s Lemma is a statement about the colourings of such graphs. Let
P be the d − 1-dimensional simplex conv(e1, . . . , ed). Let c : V → {1, . . . , d}
be a colouring. We say that a simplex is full-coloured if all of its vertices have
different colours.
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Lemma 4.5.2 (Sperner’s Lemma) Consider the graph G of a triangulation
∆ of conv(e1, . . . , ed). If c : V (G) → {1, . . . , d} is a colouring with c(v) 6= i
whenever vi = 0, then ∆ has a full-coloured (d− 1)-simplex.

Example 4.5.3 No matter how we complete the 3-colouring of the graph in
Figure 41, it will contain a full-coloured simplex.

Proof. We will prove the lemma only for d ≤ 3 and leave the general induction
step as an exercise.

If d = 1, then the simplex is just a point and it is full-coloured (with a single
colour).

If d = 2 we are colouring a path with two colours and with the two ends
having opposite colours. By counting the number of times the colour changes as
we go from one end to the other, we observe that it must have an odd number
of full-coloured edges. So, indeed, the path has a full-coloured edge.

When d = 3 we notice that the following equation holds by counting the
number of edges in the graph (with interior edges counted twice) in two different
ways:

2 ·#FullColouredEdges−#FullColouredBorderEdge =

3 ·#FullColouredSimplices + 2 ·#SemiColouredSimplices

Here a simplex is semi-coloured if it has d− 1 colours. Because the number of
full-coloured border edges is odd for each edge of ∆, the left quantity is odd.
We conclude that the right hand side of the equation is also odd, and therefore
that the number of full-coloured simplices is odd. In particular it is ≥ 1. 2

Exercise 4.5.4 Generalise the proof to any dimension.

Sperner used his lemma to give a surprisingly easy proof to a surprising
theorem in Topology.

Waiting at the laundrymat you may close your eyes and let your mind
remember the image of your clothes. As your eyes open again you will notice

Figure 41: A partial 3-colouring of a graph of a triangulation of conv(e1, e2, e3).
It is impossible to complete the 3-colouring without making a fully coloured
triangle. See Example 4.5.3.
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that there (almost?) always is at least one point on a piece of clothes that did
not move while you were not watching.

A similar situation appears if you take 2 sheets of A4 paper. First the sheets
are lying on top of each other. Take the upper piece and fold it a few times
along random lines, and place it back on the first sheet. If the folded sheet does
not stick out from the lower piece, then in fact there is one point on your folded
sheet that is now back to its original position.

This is the content of Brouwer’s Fixed-point Theorem:

Theorem 4.5.5 (Brouwer’s Fixed-point Theorem) Let B denote the unit
ball {x ∈ Rn|

∑
i x

2
i ≤ 1} and f : B → B be a continuous function. Then there

exists a point y ∈ B such that f(y) = y.

Proof. We will prove a variant of the theorem where B is not the ball but a
d−1-dimensional simplex S0 ⊆ Rd. Let L > 0 be a positive number. We choose
a triangulation ∆ of S such that every edge of a simplex in the triangulation is
shorter than L. We make a colouring c with the following property for any v
vertex in the graph of the triangulation:

f(v)c(v) ≤ vc(v)

and further require c(ei) = i for i = 1, . . . , d. It is possible to satisfy the
first condition because if f(v)i > vi for all i, then

∑
i f(v)i >

∑
i vi = 1,

contradicting that v is in the simplex S0. The second is easily satisfied.
By Sperner’s Lemma, there exists a simplex S1 = conv(v1

1, . . . , v
1
d) ∈ ∆ that

is fully coloured. If we now make a smaller choice of L we can subdivide S1 to
get a triangulation with edge lengths < L. We can colour the new vertices so
that they satisfy the condition above. We apply Sperner’s Lemma and get a
simplex S2 = conv(v2

1, . . . , v
2
d).

Repeating this process, we get d sequences of points - one for each colour.
Observe:

• The coordinate of each sequence converges because the condition on the
edge length forces each such sequence to be Cauchy as L approaches 0.

• The rth’s sequence satisfies f(vir)r ≤ (vir)r by the choice of colouring and
therefore by continuity of f the limit ur satisfies f(ur)r ≤ (ur)r.

• The limit points of the each r sequences must be the same point u since
the distances between the elements in the sequence approaches 0 as L
approaches 0.

Now u ∈ S0 because S0 is closed. Moreover f(u)r ≤ ur on each coordinate.
Because

∑
i f(u)i = 1 and

∑
i u1 = 1, we must in fact have f(u)r = ur on each

coordinate. This proves that u is the desired fixed-point. 2

Exercise 4.5.6 Why is the laundrymat analogy not good? Which conditions
are not satisfied?
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Exercise 4.5.7 Construct a continuous map from the n-dimensional simplex
in Rn+1 to the unit ball B ⊆ Rn with a continuous inverse. Use this to prove
the fixed-point theorem for unit balls.

Exercise 4.5.8 Since both Brouwer’s Fixed-point Theorem and Jordan’s Curve
Theorem are topological statements, one might think that we could fix the gap
in these notes by providing a proof of Theorem 2.1.5 using the Fixed-point the-
orem. Indeed this is the case see [8] for a proof. Read the proof. What other
theorems from analysis are needed?
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A English-Danish Dictionary

graph (graf) We distinguish between graphs and directed graphs. A graph is
a pair (V,E) of vertices and edges. For this course the set of vertices V
and the set of edges E are finite and the set E is a set of unordered pairs
(u, v) where u, v ∈ V may or may not be the same vertex. (In particular,
we disallow parallel edges in this course.)

directed graph (orienteret graf) In a directed graph (V,E) the set E con-
sists of ordered pairs (u, v) of vertices u, v ∈ V called arcs.

vertex (knude)

edge (kant) An edge has two ends.

end of edge

arc (pil) Appear in directed graphs. An arc is an ordered pair (u, v) of vertices.
The first vertex u is called the tail and the second v the head of the arc.

subgraph (delgraf) A graph G′ = (U ′, V ′) is a subgraph of G = (U, V ) if
U ′ ⊆ U and E′ ⊆ V . We write G′ ⊆ G.

spanning subgraph (udspændende delgraf) A sugraph H ⊆ G is called
spanning if V (H) = V (G).

matching parring

vertex-induced subgraph For a graph G = (V,E) and a subset W ⊆ V we
let G[W ] denote the graph with vertex set W and edge set being all edges
of E having both ends in W .

edge-induced subgraph [1, page 50] For a graph G = (V,E) and a subset
M ⊆ E we let G[M ] denote the graph with edge set M and vertex set
being all the set of all ends of edges in M .

path (sti) An path is a graph P = (V,E) where there exists names of the
vertices V = {v1, . . . , vn} such that E = {(v1, v2), (v2, v3), . . . , (vk−1, vn)}.
The vertices v1 and vn are called the ends of P .

cycle (kreds) An n-cycle Cn = (V,E) is a graph where there exists names of
the vertices V = {v1, . . . , vn} such that E = {(v1, v2), (v2, v3), . . . , (vk−1, vn), (vn, v1)}.

Forest (skov) A forest F is a graph without cyclces. (Meaning that no sub-
graph of F is a cycle.)

Tree (træ) A tree is a connected graph without cycle. (That is, it is a con-
nected forest.)

loop (sløjfe) A loop is an edge with both ends being the same vertex.

bipartite 2-delt
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component of connected component.

walk

spanning tree (udspændende træ) A spanning tree T of a graph G is a
spanning subgraph of G that is also tree.

There is not necessarily one standard translation of each word. See http:

//www.math.ku.dk/kurser/oa/Grafordbog.html for alternatives.
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B Exam topics (for fall semester 2018)

At the exam you will be assigned one of the 8 topics below at random. You will
then present the topic for approximately 15-18 minutes. Because the topics vary
in size it is important that you pick what to present. It is always good to present:
a definition, a theorem, an example and (parts of) a proof. After (or during)
your presentation we will ask questions about your presentation, your topic or
another topic from class. The whole examination including evaluation takes 30
minutes. (Recall that there is no preparation time for this examination.)

1. Matchings in bipartite graphs Choose content from Sections (1.1,) 1.2,
1.3.

2. Matchings in general graphs Choose content from Section 1.4 and pos-
sibly from earlier sections.

3. Maximal weight matching in general graphs Section 1.7.

4. Matroids and matroid polytopes Section 2.7 and something from Sec-
tions 2.1-2.6.

5. Matroids and the greedy algorithm Section 2.8 and something from
Sections 2.1-2.7.

6. Optimum branching Section 3.1 and possibly explain the connection to
matroids.

7. Chromatic polynomials

8. The 5-colouring theorem
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