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Preface

This course is inspired by the book “Gröbner bases and convex polytopes” by
Bernd Sturmfels [13]. Motivated by algorithmic problems for multivariate poly-
nomial rings and polynomial equations we study Gröbner bases and their term
orderings. Buchberger’s algorithm, convexity and Newton polytopes play im-
portant roles. The theory is applied to toric ideals and integer programming.
Unexpectedly the combinatorial space of regular triangulations of a vector con-
figuration naturally appears in this algebraic setting. The class will end with a
brief introduction to tropical geometry where all the theory is combined.

While Sturmfels’ book can be difficult to read for a beginner, the course
notes “Computational Algebra and Combinatorics of Toric Ideals“ by Diane
Maclagan and Rekha Thomas [11] are more accessible. Those notes are recom-
mended when the lecture notes for our class are too brief.

We begin with an introduction to Gröbner bases since not everybody took
an introductory algebra class based on Lauritzen’s book [10].

These notes, which will keep growing through the semester, can be found at
http://home.imf.au.dk/jensen/teaching/2014AlgebraAndPolyhedralGeometry/notes.pdf

while a version from the same class in 2012 can be found here
http://home.imf.au.dk/jensen/teaching/2012AlgebraAndPolyhedralGeometry/notes.pdf

The old version is complete, while the new version contains fewer mistakes.
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4 The Gröbner fan of an ideal 40
4.1 Finiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Every C≺(I) is of the form Cv(I) . . . . . . . . . . . . . . . . . . 42
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4.6 The intersection of two Gröbner cones is a face of both . . . . . . 49

5 Homogeneous ideals 51
5.1 Semigroups and monoids . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 The semigroup ring . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Gradings and homogeneity . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Hilbert functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Homogeneity implies completeness . . . . . . . . . . . . . . . . . 56
5.6 Homogenisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.7 Links in Gröbner fans . . . . . . . . . . . . . . . . . . . . . . . . 59
5.8 “Very homogeneous” ideals . . . . . . . . . . . . . . . . . . . . . 61
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Figure 1: The Newton polytope of the polynomial in Example 1.1.3.

1 Gröbner bases

In this section we define Gröbner bases and start discussing their relation to
convex geometry. On our way we will have to define term orders, initial terms
and the division algorithm.

1.1 The polynomial ring

We let k be a field and n ∈ N := {0, 1, 2, . . . } and consider the ring S :=
k[x1, . . . , xn] of polynomials in the variables x1, . . . , xn with coefficients in k. In
examples we will often use letters as variable names, and for example consider
the ring Q[x, y, z].

Definition 1.1.1 A vector u ∈ Nn defines the monomial xu := xu1
1 · · ·xun

n .
The vector u is called an exponent vector. By a term we mean a polynomial in
k[x1, . . . , xn] of the form cxu with c ∈ k \ {0}.

If we require the exponent vectors to be distinct then a polynomial can be
written uniquely as a sum of terms.

Definition 1.1.2 The support supp(f) of a polynomial f ∈ k[x1, . . . , xn] is the
set of exponent vectors in f (in its unique representation). The Newton polytope
NP(f) is the convex hull of supp(f) in Rn.

For the precise definition of convex hull see Definition 2.2.2.

Example 1.1.3 The polynomial f = (x3 + y+ xy)− (1 + x3 + x2) = y+ xy−
1−x2 ∈ Q[x, y] has supp(f) = {(0, 1), (1, 1), (0, 0), (2, 0)}. Its Newton polytope
is shown in Figure 1.

Definition 1.1.4 For polynomials f, g ∈ k[x1, . . . , xn] we say that f divides
g and write f |g if there exists h ∈ k[x1, . . . , xn] such that fh = g. We let
g/f := h.

We will be interested in ideals in the polynomial ring S (nonempty subsets
of S which are closed under (1) addition (f, g ∈ I ⇒ f + g ∈ I), and (2)
multiplication by elements in S (f ∈ I ∧ g ∈ S ⇒ fg ∈ I)). Considering these
sets as equations, they define subsets of kn called varieties:
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Definition 1.1.5 Let I ⊆ k[x1, . . . , xn] be an ideal. The variety V (I) defined
by I is

V (I) := {a ∈ kn : ∀f ∈ I : f(a) = 0}.

One way to get an ideal is to take a finite set of polynomials f1, . . . , fm and
look at the set they generate: 〈f1, . . . , fm〉 := {∑i gifi : gi ∈ S}. This is an
ideal. Even if we allow a possible infinite generating set of polynomials F ⊆
k[x1, . . . , xn] the set they generate 〈F 〉 = {∑m

i=0 gifi : m ∈ N∧ gi ∈ S ∧ fi ∈ F}
is an ideal. Hilbert’s basis theorem, which will follow from Proposition 1.6.7,
says that a finite set of generators suffices:

Theorem 1.1.6 (Hilbert’s Basis Theorem) Let k be a field, n ∈ N and I
an ideal in k[x1, . . . , xn]. Then there exists a finite set f1, . . . , fm of polynomials
such that I = 〈f1, . . . , fm〉.

Lemma 1.1.7 Let R be a commutative ring, and F ⊆ R a generating set for
an ideal I := 〈F 〉. If I has a finite generating set G, then there is a finite subset
F ′ ⊆ F such that I := 〈F ′〉.

Proof. Each element in G can be written as
∑m

i=1 gifi for some m ∈ N, gi ∈ R,
and fi ∈ F . We now take F ′ to be the finite set of all fi appearing when
expressing all elements of G in this way. Then I = 〈G〉 ⊆ 〈F ′〉 ⊆ 〈F 〉 = I. 2

Recall that the quotient ring k[x1, . . . , xn]/I consists of elements of the form
[f ] := f + I = {f +h : h ∈ I} where f ∈ k[x1, . . . , xn]. The element [f ] is called
a coset and together the cosets form a ring with operations [f ] + [g] := [f + g]
and [f ][g] := [fg]. Furthermore, [f ] = [g] if and only if f − g ∈ I.

We are interested in computational tools for the following problems:

• Finding all points in the variety V (I).

• Doing computations in the quotient ring k[x1, . . . , xn]/I – In particular
testing ideal membership: Given f ∈ S and generators for an ideal I ⊆ S,
decide if f ∈ I.

Gröbner bases will help us solve these problems. Furthermore, the existence of
Gröbner bases will prove Hilbert’s basis theorem.

1.2 Monomial ideals and Dickson’s Lemma

In this subsection we consider the special case of monomial ideals.

Definition 1.2.1 An ideal I ⊆ k[x1, . . . , xn] is called a monomial ideal if it is
generated by (possibly infinitely many) monomials.

We observe that a polynomial belongs to a monomial ideal if and only if each
of its terms does. Furthermore, a monomial ideal is determined by the set of
monomials it contains (because these generate the ideal). This makes it possible
to draw monomial ideals by drawing the exponents vectors of their generators
in Rn.
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Figure 2: Staircase diagrams of the ideals in Example 1.2.2.

Observe that xv|xu if and only if ∀i : vi ≤ ui. Furthermore if M is a set a
monomials then xu ∈ 〈M〉 ⇔ ∃xv ∈ M : xv|xu. See Exercise 10, Sheet 1.

Example 1.2.2 Staircase diagrams of the monomial ideals I := 〈x4, x2y, y2〉 ⊆
k[x, y] and J := 〈x2, y3, y2z2, xyz〉 ⊆ k[x, y, z] are shown in Figure 1.2. The
second picture is drawn without perspective, and can therefore be interpreted
in two ways. Most likely your mind will see the grey cubes with coordinates
being vectors not among the exponent vectors of monomials in J .

A generating set F ⊆ k[x1, . . . , xn] for an ideal is called minimal if for every
f ∈ F : 〈F 〉 6= 〈F \ {f}〉.

Lemma 1.2.3 Every monomial ideal I ⊆ k[x1, . . . , xn] has a unique minimal
monomial generating set.

Proof. Consider the set F := {xu ∈ I : ∀xv ∈ I \ {xu} : xv 6 |xu}. We first prove
that F generates I by showing that every monomial xw ∈ I is divisible by some
element of F . If xw ∈ F then indeed xw ∈ F divides xw. If xw 6∈ F then there
exists xw

′ ∈ I \{xw} such that xw
′ |xw. If xw′ ∈ F then we are done. If xw

′ 6∈ F
then there exists xw

′′ ∈ I \ {xw′} such that xw
′′ |xw′ |xw. If xw

′′ ∈ F then we
are done. We continue in this way, but the process must eventually stop since
the integer entries of the exponent vectors become smaller and smaller. Hence
there exists xu ∈ F such that xu|xw.

We now argue that F is contained in any monomial generating set for I. But
this is indeed the case because no other generator can divide these elements.
This shows that F is minimal and unique. 2

We prove Hilbert’s basis theorem in the monomial case:

Lemma 1.2.4 (Dickson’s Lemma) Every monomial ideal I ⊆ k[x1, . . . , xn]
has a finite monomial generating set.

Proof. Induction. For n = 0 the ideal is either {0} or k. In the first case the
empty set ∅ is a finite generating set. In the second case {1} is.

For n > 0 we let π : Nn → Nn−1 denote the projection which forgets
the last coordinate. Define E := π({v ∈ Nn : xv ∈ I}). By the induction
hypothesis J := 〈xu : u ∈ E〉 ⊆ k[x1, . . . , xn−1] has a finite generating set and
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by Lemma 1.1.7 there exists a finite subset F ⊆ E such that J = 〈xu : u ∈ F 〉.
Each u ∈ F has some lift v ∈ Nn such that π(v) = u and xv ∈ I with vn
minimal. We let G denote the set of these lifts. We now take m = maxv∈Gvn.
If xw ∈ I with wn > m then the there is some u ∈ F such that xu|xπ(w). Since
wn > m the lift v of u satisfies xv|xw. Now for j = 0, . . . ,m we consider the
ideal Jj := 〈xu : u ∈ Nn−1 and xuxjn ∈ I〉 ⊆ k[x1, . . . , xn−1]. Geometrically Jj
is a slice of (the complement of) the staircase diagram of I where un = j. By
induction each Jj has a finite monomial generating set Gj . The set {xv : v ∈
G} ∪⋃m

j=0{xux
j
n : xu ∈ Gj} is a finite generating set of I. 2

Corollary 1.2.5 Let M1 ⊆ M2 ⊆ M3 ⊆ · · · be monomial ideals in k[x1, . . . , xn].
For some j ∈ N we must have Mj = Mj+1 = Mj+2 = · · · .

Proof. We consider the ideal M :=
⋃

iMi generated by all monomials in all Mi.
By Lemma 1.2.4 it has a finite generating set F . For each fi ∈ F there exists
a ji ∈ N such that fi ∈ Mji . For j := maxi(ji) we have F ⊆ Mj , implying
M ⊆ Mj . Since Mi ⊆ M for all i we have M = Mj = Mj+1 = · · · . 2

A ring for which the above corollary holds for inclusions of any ideals I1 ⊆ I2 ⊆
· · · (not necessarily monomial ideals) is called a Noetherian ring. We will prove
later that k[x1, . . . , xn] is Noetherian.

1.3 Term orderings

Recall that a total ordering ≤ on a setX is a relation satisfying for all a, b, c ∈ X:

Antisymmetry: a ≤ b ∧ b ≤ a implies a = b.

Transitivity: a ≤ b ∧ b ≤ c implies a ≤ c.

Totality: a ≤ b ∨ b ≤ a.

Just like [11] and [13] we will be sloppy and sometimes forget the horisontal
bar when writing ≤. For example when we say “Let ≺ be a total order(ing)”
we really mean that � should be the total ordering, and ≺ is then defined by
a ≺ b ⇔ a � b ∧ a 6= b.

Definition 1.3.1 A term ordering (or amonomial ordering) � on k[x1, . . . , xn]
is an total ordering on the monomials in k[x1, . . . , xn] such that:

• xa � xb implies xaxc � xbxc for a, b, c ∈ Nn.

• 1 = x0 � xa for all a ∈ Nn.

Since term orders are orderings on monomials, it would be more correct to call
them monomial orders and some people do that. However, as we shall see later,
we most often use orderings to order the terms of a polynomial.

We give two examples of term orderings:
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Example 1.3.2 We define the lexicographic term ordering �lex on k[x1, . . . , xn]
as follows. For a, b ∈ Nn we let xa ≺lex xb ⇔ a1 < b1 ∨a1 = b1 ∧ (a2 < b2 ∨a2 =
b2 ∧ (. . . (an < bn) . . . ))). Or, more precisely, xa ≺lex xb ⇔ ∃j ≤ n : a1 =
b1 ∧ a2 = b2 ∧ · · · ∧ aj−1 = bj−1 ∧ aj < bj .

Example 1.3.3 In Q[x, y, z] we have 1 ≺lex z ≺lex z2 ≺lex z9 ≺lex y ≺lex

yz2 ≺lex y5 ≺lex x2y2z ≺lex x3.

Remark 1.3.4 For a, b ∈ Nn, xa �lex xb if and only if a − b = 0 or the first
non-zero entry of a− b is negative.

Lemma 1.3.5 The lexicographic ordering ≺lex is a term ordering.

Proof. Antisymmetry: We have a, b ∈ Nn such that xa �lex xb and xa �lex xb.
Suppose a 6= b. Then Remark 1.3.4 says that the first non-zero entry of
a− b is negative and the first non-zero entry of b− a is negative. This is
a contradiction. Hence xa = xb.

Transitivity: Suppose xa �lex xb and xb �lex xc. If a = b or b = c then we
conclude xa �lex xb. If both a 6= b and b 6= c then by Remark 1.3.4 the first
non-zero entry of a− b is negative. So is the first non-zero entry of b− c.
We conclude that the first non-zero entry of the sum (a−b)+(b−c) = a−c
is negative, implying xa �lex xc.

Totality: We have a, b ∈ Nn. If a = b then xa �lex xb. Assume a 6= b then the
first non-zero entry of a− b is either positive or negative. In the last case
xa �lex xb. In the first the first case the first non-zero entry of b − a is
negative, implying xb �lex xa.

Multiplication respected: By Remark 1.3.4, xa �lex xb is a condition on
a− b. Furthermore, xa+c �lex xb+c is the same condition on (a+ c)− (b+
c) = a− b.

1 is smallest: x0 �lex xb since for b ∈ Nn, either 0− b = 0 or the first nonzero
entry of 0− b is negative.

2

Example 1.3.6 We define the graded (or degree) reverse lexicographic term
ordering ≺grlex on k[x1, . . . , xn] as follows. For a, b ∈ Nn we let xa ≺grlex xb ⇔
∑

i ai <
∑

i bi ∨
∑

i ai =
∑

i bi ∧ ∃j : aj > bj ∧ aj+1 = bj+1 ∧ · · · ∧ an = bn.

Lemma 1.3.7 Every term ordering ≺ on k[x1, . . . , xn] is a well ordering.

Proof. Let X be a set of monomials in k[x1, . . . , xn]. We must show that X
contains a smallest element. By Lemma 1.2.4 and Lemma 1.1.7 the ideal 〈X〉
has a finite monomial generating set Y ⊆ X. Let xa be the smallest term in the
finite set Y . We claim that xa is a smallest element of X. Let xb be any term
in X. Then xb ∈ 〈X〉 = 〈Y 〉. Hence some xc ∈ Y divides xb. That is xb = xcxd

for some d ∈ Nn. By Definition 1.3.1 we have 1 � xd, implying xc � xcxd = xb.
We also have xa � xc since xc ∈ Y . Hence xa � xc � xb as desired. 2
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Figure 3: The Newton polytope of f in Example 1.4.2.

1.4 Initial terms and initial forms

Definition 1.4.1 Let ≺ be a term ordering, ω ∈ Rn and f =
∑

u∈U cux
u ∈

k[x1, . . . , xn] a polynomial with support U ⊆ Nn, cu 6= 0. If f 6= 0 we define
the initial term in≺(f) of f to be cux

u with xu being largest with respect to ≺
among the monomials of f . For any f =

∑

u∈U cux
u the initial form inω(f) is

the sum of all cux
u such that ω · u = maxv∈U (ω · v). We call maxv∈U (ω · v) the

ω-degree of f .

When finding initial forms of f it is advantageous to draw NP (f).

Example 1.4.2 Let f = x3 − x3y + 3x3y2 + 7x2y4 − xy + y ∈ Q[x, y]. Then

• in≺lex
(f) = 3x3y2,

• in(1,0)(f) = x3 − x3y + 3x3y2,

• in(100,1)(f) = 3x3y2,

• in≺grevlex
(f) = 7x2y4, and

• in(1,1)(f) = 7x2y4.

See Figure 3.

Lemma 1.4.3 Let ≺ be a term ordering, ω ∈ Rn and f, g ∈ k[x1, . . . , xn].
Then

• inω(fg) = inω(f)inω(g), and

• if f 6= 0 6= g then in≺(fg) = in≺(f)in≺(g).

Proof. Left to the reader. 2

1.5 The division algorithm

If n = 1 and we have only one generator for the ideal I = 〈g〉, then we can check
if a given polynomial f is in I by running the well-known polynomial division
algorithm on f , dividing by g. The remainder is 0 if and only if f ∈ I.

In this section we generalize the division algorithm to more variables and
more polynomials. Unfortunately, doing so, we loose the above important prop-
erty. We can get a non-zero remainder even if f is I.
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Algorithm 1.5.1 (Polynomial Division)
Input: A polynomial f ∈ k[x1, . . . , xn] and a list of polynomials {f1, . . . , fs}
with fi ∈ k[x1, . . . , xn] \ {0} and a term order ≺.
Output: A remainder r ∈ k[x1, . . . , xn] and a1, . . . , as ∈ k[x1, . . . , xn] such
that f = r +

∑

i aifi with no term of r divisible by any of in≺(f1), . . . , in≺(fs).
Furthermore, if f 6= 0 then every term A of ai satisfies in≺(Afi) � in≺(f).

• For i = 1, . . . , s let ai := 0.

• Let r := 0 and p := f .

• While(p 6= 0)

– Choose a term P from p. (For example P := in≺(p).)

– If there exists i such that in≺(fi)|P then

∗ ai := ai + P/in≺(fi)

∗ p := p− (P/in≺(fi))fi

– else

∗ r := r + P

∗ p := p− P

• Return r, a1, . . . , as.

We notice that the division algorithm is non-deterministic since there may
be more possible choices of P and i and the algorithm can choose as it likes.
In particular the output of the algorithm is not unique. Making the suggested
choice P := in≺(p) often makes the algorithm terminate sooner.

Proof. We prove correctness and termination. To prove that the algorithm is
correct we must show that the output satisfies the specifications. We notice
that the equation f = p + r +

∑

i aifi is satisfied at the beginning and after
every iteration of the loop. At the end p = 0 and the equation f = r +

∑

i aifi
follows. We also notice that only terms which are not divisible by any in≺(fi)
are appended to r. Finally, notice that in≺(p) never gets ≺-larger during the
algorithm: In the case where the condition of the if statement is true because
in≺(P/in≺(fi)fi) = in≺(P/in≺(fi))in≺(fi) = (P/in≺(fi))in≺(fi) = in≺(P ) �
in≺(p). In the second case because a term is removed from p. Consequently,
any term P/in≺(fi) introduced to ai satisfies in≺((P/in≺(fi))fi) = in≺(P ) �
in≺(p) � in≺(f). Thus the output satisfies the specifications.

To prove that the algorithm terminates we observe that if we always make
the choice P := in≺(p), then at each iteration the initial term in≺(p) keeps
getting strictly smaller in the ≺ ordering: either because −in≺(P/in≺(fi)fi) =
−P cancels with P = in≺(p) or because P = in≺(p) is moved from p to r.
The set of in≺(p) appearing during a run of the algorithm must have a smallest
element by Lemma 1.3.7. Hence the algorithm cannot continue forever.

If we do not consistently make the choice P := in≺(p) then the proof is
trickier: We will first assume that f is a single term. We let Pi denote the value
of P in the ith iteration, starting at i = 1, 2, . . . . We now define a tree on the
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set of is appearing, namely we connect i to j if Pj was introduced to p when
processing Pi. To be precise, we only connect i to j if the monomial of Pj was
not present in p immediately before processing Pi. This ensures that j has just
a single parent and that we therefore build a tree. We notice that Pj ≺ Pi if
(i, j) is an edge. By Lemma 1.3.7 every path starting at the root must be finite.
By Lemma 1.5.2 below we get that the tree is finite. Hence the algorithm has
to terminate. If f was not a single polynomial, then the argument still works
by adding f as an artificial vertex 0 of the tree, and adding an edge from 0 to
i if i has no parent. 2

Lemma 1.5.2 Let T be a tree with the property that any vertex v has only
finitely many child vertices. Suppose that T does not contain an infinite path
starting at the root. Then T has only finitely many vertices.

Proof. Suppose that T had an infinite number of vertices. We will construct an
infinite path in T starting at the root v0. The root v0 has only finitely many
children, so one of its children must have infinitely many vertices below it. Let’s
call that child v1. We repeat the process with v1. Since there are infinitely many
vertices below it, one of the children v2 has infinitely many vertices. The path
v0, v1, v2, v2, . . . constructed in this way is infinite. This is a contradiction. 2

Example 1.5.3 Let ≺=≺lex, f = x2y3−2y, f1 = xy−y, f2 = x2y2−x−1, f3 =
x− 2y + 1. Here the initial terms have been underlined. We list some possible
runs of the division algorithm. We keep track of the values p. A → means
reducing by the subscript. A ↓ means moving the subscript to the remainder.

• x2y3 − 2y →f1 xy3 − 2y →f1 y3 − 2y ↓y3 −2y ↓−2y 0 r = y3 − 2y

• x2y3 − 2y →f2 xy + y − 2y = xy − y →f1 0 r = 0

• x2y3 − 2y ↓−2y x2y3 →f3 2xy4 − xy3 →f1 2y4 − xy3 →f1 2y4 − y3 ↓−y3

2y4 ↓2y4 0 r = 2y4 − y3 − 2y.

If we keep track of the coefficient polynomials ai in the second run, then we get
the identity x2y3 − 2y = y(x2y2 − x− 1) + 1(xy − y) proving that x2y2 − 2y ∈
〈xy − y, x2y2 − x− 1, x− 2y + 1〉.

As the example shows, whether the remainder of the division is zero depends
on the actual choices made in the algorithm. We would like to have a notion of
“reduces to zero” which is independent of the division algorithm:

Definition 1.5.4 Let f, f1, f2, . . . , fs ∈ k[x1, . . . , xn] be polynomials and ≺ a
term ordering. We say that f reduces to zero modulo f1, . . . , fs if there exists
a1, . . . , as such that f =

∑

i aifi and in≺(fi)in≺(ai) � in≺(f) for all i with
aifi 6= 0.

Lemma 1.5.5 If the remainder produced by some run of the division algorithm
on f, f1, . . . , fs is 0 then f reduces to zero modulo f1, . . . , fs.

Proof. Algorithm 1.5.1 produces the desired expression because f = 0+
∑

i aifi.
All we need to check is that for ai 6= 0 we have in≺(fi)in≺(ai) � in≺(f). But
this also follows from the specifications of the algorithm. 2
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1.6 Gröbner bases

Example 1.5.3 showed that the output of the division algorithm does not always
have the desired properties. In this section we introduce the notion of Gröbner
bases. We will see in Lemma 1.6.6 that Algorithm 1.5.1 is well-behaved if run
with a Gröbner basis {f1, . . . , fs}.

Definition 1.6.1 Let I ⊆ k[x1, . . . , xn] be an ideal. Let ≺ be a term ordering
and ω ∈ Rn. We define the initial ideals of I:

• in≺(I) := 〈in≺(f) : f ∈ I \ {0}〉 and

• inω(I) := 〈inω(f) : f ∈ I〉.

We observe that in≺(I) is always a monomial ideal, while inω(I) might not be:

Example 1.6.2 Let I := 〈x2+y2+x2y, x2+xy+x2y〉 ⊆ Q[x, y] and ω = (1, 1).
Then it is easy to see that x2y is an initial form of an element of I and must
be in inω(I). But actually x2y is not enough to generate inω(I). For example
inω((x

2 + y2 + x2y) − (x2 + xy + x2y)) = inω(y
2 − xy) = y2 − xy. In fact we

claim (without proof) that inω(I) = 〈y3, xy−y2, x3〉. We also have in≺grlex
(I) =

〈y3, xy, x3〉.

As the example shows, it is not always easy to find the initial ideal. Later we
will see how to do this for term orders (Algorithm 1.7.3) and vectors (Corol-
lary 4.4.4).

Definition 1.6.3 Let I ⊆ k[x1, . . . , xn] be an ideal and ≺ be a term ordering.
A finite set {f1, . . . , fs} ⊆ I is called a Gröbner basis for I with respect to ≺ if
〈in≺(f1), . . . , in≺(fs)〉 = in≺(I).

Example 1.6.4 The set {x2 + y2 + x2y, x2 + xy+ x2y} is not a Gröbner basis
for the ideal I in Example 1.6.2 with respect to ≺grlex since the initial forms
of elements in the set are x2y = x2y. Which do not generate in≺grlex

(I) =
〈y3, xy, x3〉. The set {y3+ y2+x2, xy− y2, x3+ y2+x2} ⊆ I is a Gröbner basis
for I since its initial terms generate in≺grlex

(I) = 〈y3, xy, x3〉.

Lemma 1.6.5 If {f1, . . . , fs} is a Gröbner basis for an ideal I ⊆ k[x1, . . . , xn]
with respect to a term order ≺ then I = 〈f1, . . . , fs〉.

Proof. We need to show that I ⊆ 〈f1, . . . , fs〉, so we pick f ∈ I. Let r be
the remainder produced by a run of the division algorithm (Algorithm 1.5.1).
Notice that r ∈ I. Suppose that r 6= 0. Then the term in≺(r) ∈ in≺(I) =
〈in≺(f1), . . . , in≺(fs)〉. This means that some in≺(fi) divides in≺(r). This con-
tradicts the properties of Algorithm 1.5.1. Hence r = 0, which implies that
the polynomials produced in the algorithm satisfy f = r+

∑

i aifi =
∑

i aifi ∈
〈f1, . . . , fs〉. 2
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Lemma 1.6.6 Let {f1, . . . , fs} be a Gröbner basis for an ideal I ⊆ k[x1, . . . , xn]
with respect to a term ordering ≺. The remainder produced by the division
algorithm (Algorithm 1.5.1) when run on a polynomial f is independent of the
choices performed in the run.

Proof. Suppose that one run gave r and another gave r′. Then r +
∑

i aifi =
f = r′ +

∑

i a
′
ifi imply r − r′ ∈ I. If r 6= r′ then there would be a leading term

in≺(r − r′) ∈ in≺(I) which is not divisible by any in≺(fi). This contradicts
〈in≺(f1), . . . , in≺(fs)〉 = in≺(I). 2

Gröbner bases have the properties we want. We first give a non-constructive
proof of their existence. In the next section we present a concrete algorithm.

Proposition 1.6.7 Let I ⊆ k[x1, . . . , xn] be an ideal and ≺ a term ordering
on k[x1, . . . , xn]. Then I has a Gröbner basis with respect to ≺.

Proof. The ideal in≺(I) is a monomial ideal. By Dickson’s Lemma 1.2.4 it has
the form 〈xu1 , . . . , xus〉. By Exercise 10 of Sheet 1, for every i there exists fi ∈ I
such that in≺(fi) = xui . The set {f1, . . . , fs} ⊆ I is a Gröbner basis of I w.r.t.
≺ because in≺(I) = 〈xu1 , . . . , xus〉 = 〈in≺(f1), . . . , in≺(fs)〉. 2

In particular we have proved Hilbert’s Basis Theorem 1.1.6. Furthermore:

Corollary 1.6.8 For a field k the polynomial ring k[x1, . . . , xn] is Noetherian.
That is if I1 ⊆ I2 ⊆ I3 . . . are ideals in k[x1, . . . , xn] then there exists j such
that Ij = Ij+1 = Ij+2 = · · · .

Proof. We use the argument of the proof of Corollary 1.2.5. 2

Definition 1.6.9 Let I ⊆ k[x1, . . . , xn] be an ideal and ≺ a term ordering. A
monomial xu 6∈ in≺(I) is called a standard monomial (w.r.t. I and ≺). We let
std≺(I) denote the set of all standard monomials.

If we have a Gröbner basis for an ideal I one of the interpretations of the
division algorithm is that it writes a polynomial f as a linear combination of
standard monomials modulo I. The remainder is called the normal form of f .

Lemma 1.6.10 The cosets of the standard monomials std≺(I) form a k-vector
space basis {[xu] : xu ∈ std≺(I)} of the quotient ring k[x1, . . . , xn]/I.

Proof. Let S = k[x1, . . . , xn]. To prove that the set spans S/I, take a vector
[f ] ∈ S/I with f ∈ S. The Division Algorithm 1.5.1 gives an expression f =
r +

∑s
i=1 aifi with r =

∑

xu∈std≺(I) cux
u and cu ∈ k, implying f −∑s

i=1 aifi =
∑

xu∈std≺(I) cux
u. Therefore [f ] = [f − ∑s

i=1 aifi] = [
∑

xu∈std≺(I) cux
u] =

∑

xu∈std≺(I) cu[x
u]. This proves that {[xu] : xu ∈ std≺(I)} spans S/I.

To prove independence of the set {[xu] : xu ∈ std≺(I)}, suppose that we
had

∑

xu∈std≺(I) cu[x
u] = [0] with cu ∈ k. Then

∑

xu∈std≺(I) cux
u ∈ I. If some

cu was non-zero, then taking initial term we get a standard monomial in the
initial ideal: in≺(

∑

xu∈std≺(I) cux
u) = cvx

v ∈ in≺(I) for some v — a contra-
diction. Therefore cu = 0 for all u and the vectors must be independent. 2
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Corollary 1.6.11 Let {f1, . . . , fs} be a Gröbner basis for an ideal I ⊆ k[x1, . . . , xn]
with respect to a term ordering ≺. A polynomial f belongs to I if and only if
the remainder produced by the division algorithm is 0.

Proof. If the remainder is 0, then we have f = 0 +
∑

i aifi ∈ I. On the other
hand, if f ∈ I then the remainder r produced by Algorithm 1.5.1 is a linear
combination r =

∑

a∈std≺(I) caa with ca ∈ k and we have [0] = [f ] = [r] =
[
∑

a∈std≺(I) caa] =
∑

a∈std≺(I) ca[a] in k[x1, . . . , xn]/I. By Lemma 1.6.10 the
standard monomials are independent, which shows ca = 0 for all a. Hence
r = 0. 2

An ideal can have many Gröbner bases with respect to the same ordering
as the following example shows.

Example 1.6.12 The ideal I of Example 1.6.2 has

{y3 + y2 + x2, 2xy − 2y2, x3 − x2y, x2y + x2 + y2} ⊆ I

as a Gröbner basis w.r.t. ≺grlex because the initial terms generate in≺grlex
(I) =

〈x3, xy, y3〉. Because in≺grlex
(I) is generated by just the three monomials x3, xy

and y3, we can leave out x2y + x2 + y2 and will still have a Gröbner basis:

{y3 + y2 + x2, 2xy − 2y2, x3 − x2y} ⊆ I.

This basis is called aminimal Gröbner basis. We may also scale the polynomials
to make the coefficients of the initial terms 1:

{y3 + y2 + x2, xy − y2, x3 − x2y} ⊆ I.

To get an even nicer Gröbner basis, we observe that the tail of x3 − x2y, being
−x2y, contains a monomial which is divisible by an initial term. We perform
division of −x2y modulo the polynomials and get the unique remainder x2+y2.
We now substitute this tail, and get the reduced Gröbner basis

{y3 + y2 + x2, xy − y2, x3 + x2 + y2} ⊆ I.

The precise definition of minimal and reduced follows below.

Definition 1.6.13 The Gröbner basis of Definition 1.6.3 is called minimal if
if {in≺(f1), . . . , in≺(fs)} is a minimal generating set for in≺(I). That is, no
element can be left out. If furthermore, for every i no term of fi − in≺(fi) is
divisible by any in≺(fj) and in≺(fi) has coefficient 1 then {f1, . . . , fs} is called
a reduced Gröbner basis.

Example 1.6.12 shows how to turn a Gröbner basis into a reduced one. We will
later state these processes as Algorithms 1.7.8 and 1.7.9.

Proposition 1.6.14 Every ideal has at most one reduced Gröbner basis with
respect to a given term order ≺.
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Proof. By Lemma 1.2.3 the initial ideal in≺(I) has a unique minimal monomial
generating set {xu1 , . . . , xus}. Therefore every reduced Gröbner basis w.r.t. ≺
must consist of f1, . . . , fs where in≺(fi) = xui and all other monomials of fi
belong to std≺(I). Suppose there were two polynomials fi and f ′

i in I with
in≺(fi) = xui = in≺(f

′
i) and all other monomials in std≺(I). If fi − f ′

i is
non-zero, the monomial of in≺(f − f ′) is in std≺(I) which is a contradiction.
Therefore there is only one possible choice of fi. 2

The unique reduced Gröbner basis of I with respect to ≺ is denoted G≺(I).

1.7 Buchberger’s Algorithm

Proposition 1.6.7 says that every ideal ideal I ⊆ k[x1, . . . , xn] has a Gröbner
basis with respect to every term order. In this section we will show how to
construct such a Gröbner basis given generators for I.

Definition 1.7.1 Let ≺ be a term order and f, g be two non-zero polynomials
in k[x1, . . . , xn]. We define the S-polynomial of f and g:

S≺(f, g) =
lcm(in≺(f), in≺(g))

in≺(f)
f − lcm(in≺(f), in≺(g))

in≺(g)
g

where lcm(cxu, c′xv) := xmax(u,v) (maximum is taken coordinate-wise).

We observe that the leading terms of the two parts of the S-polynomial cancel.
In particular, every term of S≺(f, g) is ≺-smaller than lcm(in≺(f), in≺(g)).

Theorem 1.7.2 Let G = {g1, . . . , gs} ⊆ k[x1, . . . , xn] \ {0} and ≺ be a term
order. If for all i, j the polynomial S≺(gi, gj) reduces to zero modulo G, then G
is a Gröbner basis for I := 〈G〉.

Proof. Suppose G was not a Gröbner basis. Then there exists xu ∈ in≺(I) \
〈in≺(g) : g ∈ G〉. By Exercise 10 of Sheet 1 there exists f ∈ 〈G〉 with xu =
in≺(f). We may express f as a finite sum

∑

i aigi with ai being a term and
the gi’s being (possibly repeated) elements of G. But let us not just pick
an arbitrary such expression, but one where the largest in≺(aigi) appearing is
smallest possible. This can be done since ≺ is a well-order (Lemma 1.3.7). Now
consider a ≺-largest term cxv = in≺(ajgj) appearing in

∑

i aigi before summing
up. This term must cancel since otherwise xu = xv ∈ 〈in≺(g) : g ∈ G〉. Hence
we find j′ with c′xv = in≺(aj′gj′). That the cancellation occurs implies that
ajgj − c

c′
aj′gj′ is a multiple of S≺(gj , gj′) which reduces to zero, meaning that

ajgj − c
c′
aj′gj′ =

∑

l dlfl for some fl ∈ G and dl with in≺(fldl) ≺ xv. In the
sum

∑

i aigi we now replace ajgj by
∑

l dlfl and add c
c′
aj′ to the coefficient

of gj′ (possibly making this summand disappear). This removes at least one
appearance of xv, and only introduces ≺-smaller terms. We repeat this process
until no more xv appear. We now have a contradiction since the expression
∑

i aigi for f has the largest terms ≺-smallest, but we have an expression with
smaller largest terms. Consequently, G is a Gröbner basis with respect to ≺. 2
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Algorithm 1.7.3 (Buchberger’s Algorithm)
Input: A generating set F = {f1, . . . , ft} ⊆ k[x1, . . . , xn] \ {0} for an ideal I
and a term order ≺.
Output: A Gröbner basis for I with respect to ≺.

• G := F

• While ∃g, h ∈ G such that S≺(g, h) does not reduce to zero modulo G.

– Let r be a remainder produced by the division algorithm (Algorithm 1.5.1)
run on S≺(g, h) and G

– Let G := G ∪ {r}.

Proof. To guarantee that S≺(g, h) reduces to zero modulo G we can use the Di-
vision Algorithm 1.5.1 and Lemma 1.5.5. (A technical remark: If the remainder
is non-zero then it is not clear that S≺(g, h) does not reduce to zero modulo G.
However, it is clear that G is not yet a Gröbner basis (Corollary 1.6.11) and it
is safe to add the remainder to G, ensuring that S≺(g, h) now reduces to zero.)

If the algorithm terminates, then by Theorem 1.7.2 the set G is a Gröbner
basis for 〈G〉. Furthermore 〈G〉 = I since we only add elements of I to G. To
show that the algorithm terminates we observe that in every step the monomial
ideal 〈in≺(g) : g ∈ G〉 keeps getting strictly larger because in≺(r) is produced
from the division algorithm with the property that no in≺(g) divides it. By
Corollary 1.2.5 this cannot go on forever. 2

Example 1.7.4 We continue Example 1.6.2, but starting with the generating
set {g1, g2} = {xy− y2, y3 + x2 + y2} for I and with ≺ being the degree reverse
lexicographic ordering. To compute a Gröbner basis we first reduce S≺(g1, g2) =
−y4−x3−xy2 modulo {g1, g2} using the division algorithm and get remainder
−x3 + y3 =: g3. Since the remainder is not zero, we add it to the generating
set. We now check that S≺(g1, g3) = −x2y2 + y4 gives remainder zero modulo
{g1, . . . , g3}. Finally we check that S≺(g2, g3) reduces to zero (possibly using
Lemma 1.7.6 below). We conclude that {g1, . . . , g3} = {xy − y2, y3 + x2 +
y2,−x3 + y3} is a Gröbner basis. In particular in≺(I) = 〈xy, y3, x3〉.

Remark 1.7.5 From the proof it follows that if we for some reason know that
S≺(g, h) reduces to zero in the sense of Definition 1.5.4 then we can simply
ignore that S-polynomial in the algorithm. The following lemma becomes useful.

Lemma 1.7.6 Let f, g ∈ k[x1, . . . , xn] \ {0} and ≺ a term ordering. If for all
i:xi 6 |in≺(f) ∨ xi 6 |in≺(g) then S≺(f, g) reduces to zero modulo f and g.

Proof. We observe that S≺(sf, tg) = S≺(f, g) for s, t ∈ k \ {0}. Hence, we may
assume that the coefficients of in≺(f) and in≺(g) are both 1. We then have

S≺(f, g) =
lcm(in≺(f), in≺(g))

in≺(f)
f − lcm(in≺(f), in≺(g))

in≺(g)
g

=
in≺(f)in≺(g)

in≺(f)
f − in≺(f)in≺(g)

in≺(g)
g = in≺(g)f − in≺(f)g
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= (in≺(g)f − gf)− (in≺(f)g − gf) = (f − in≺(f))g − (g − in≺(g))f.

By to Definition 1.5.4 we are done if f or g is a single term. If not it suffices
argue that in≺((f − in≺(f))g) and in≺((g− in≺(g))f) are smaller than or equal
to in≺(S≺(f, g)) in the ≺ ordering. If the exponents of in≺((f − in≺(f))g) =
in≺(f−in≺(f))in≺(g) and in≺((g−in≺(g))f) = in≺(g−in≺(g))in≺(f) are equal,
then we conclude (using the assumption that in≺(f) and in≺(g) have no common
monomial factor) that in≺(f)|in≺(f − in≺(f)). This contradicts the properties
of ≺ being a term order. Hence in≺((f − in≺(f))g) and in≺((g − in≺(g))f)
have different exponent vectors and the largest of these cannot cancel when
subtracting. Therefore the largest term also appears in S≺(f, g). 2

Example 1.7.7 Using Lemma 1.7.6 it is easy to check that {x2+2xy+y3, 3y2+
3x+ 5} is a Gröbner basis with respect to ≺(5,3)t .

It is common to extend Buchberger’s algorithm with the following two steps to
compute the reduced Gröbner basis G≺(I), thereby making the output unique.

Algorithm 1.7.8 (Minimizing a Gröbner basis)
Input: A Gröbner basis G ⊆ k[x1, . . . , xn] w.r.t. some term order ≺.
Output: A minimal Gröbner basis G′ for 〈G〉 w.r.t. ≺.

• G′ := G

• While it is possible to remove a g ∈ G′ from G′, and still keep the equality
〈in≺(g) : g ∈ G〉 = 〈in≺(g) : g ∈ G′〉, do so.

Proof. The set remains a Gröbner basis for 〈G〉 since 〈in≺(g) : g ∈ G′〉 =
in≺〈G〉. It is minimal since no further g can be deleted. 2

Algorithm 1.7.9 (Autoreducing a Gröbner basis)
Input: A minimal Gröbner basis G′ ⊆ k[x1, . . . , xn] w.r.t. some term order ≺.
Output: The reduced Gröbner basis G≺(〈G′〉).

• Substitute each g ∈ G′ by in≺(g) + r, where r is the unique remainder
produced by Algorithm 1.5.1 when run on the tail g − in≺(g) and G′.

1.8 Elimination

In Section 1.1 we stated three problems for polynomial rings which can be solved
using Gröbner bases. We have already proved Hilbert’s Basis Theorem 1.1.6
and shown how Gröbner bases can be used to compute in the quotient ring
k[x1, . . . , xn]/I (Corollary 1.6.11 and Exercise 5 on Sheet 2). We will now
discuss how to solve polynomial equations. The technique presented works
particularly well if the equations have only finitely many solutions over C.

Proposition 1.8.1 Let I ⊆ k[x1, . . . , xn] be an ideal. Let G be a Gröbner basis
of I with respect to ≺lex. For l = 1, . . . , n we have G′ := G ∩ k[xl, . . . , xn] is a
Gröbner basis for the elimination ideal I ∩ k[xl, . . . , xn] ⊆ k[xl, . . . , xn].
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Proof. Clearly, G′ ⊆ I ∩ k[xl, . . . , xn] and 〈in≺lex
(g) : g ∈ G′〉 ⊆ in≺lex

(I ∩
k[xl, . . . , xn]). It remains to show that 〈in≺lex

(g) : g ∈ G′〉 ⊇ in≺lex
(I ∩

k[xl, . . . , xn]). Let xu be a monomial in in≺lex
(I ∩ k[xl, . . . , xn]). Then xu ∈

in≺lex
(I). Since G is a Gröbner basis, there must exist g ∈ G such that

in≺lex(g)|xu. Since xu contains no xj with j < l, this must also be the case
for in≺lex(g). By the properties of the term order, no term from g can contain
an xj with j < l. Hence g ∈ G′, proving xu ∈ 〈in≺lex

(g) : g ∈ G′〉. 2

We can use Gröbner bases for solving polynomial equations:

Example 1.8.2 We wish to compute the solutions to the system x2 + y2 = 1
and x2 + y2 − x − y = 2. Let I = 〈x2 + y2 − 1, x2 + y2 − x − y − 2〉 ⊆ C[x, y].
We compute the lexicographic Gröbner basis

{y2 + y, x+ 1 + y}

(which is an equivalent system of equations) and conclude that I ∩ C[y] =
〈y2 + y〉. From this we conclude that y = 0 or y = −1. Substituting we get

V (I) = {(−1, 0), (0,−1)}.

Why did every solution of the elimination ideal extend to a solution of the ideal?
We show two examples where this is not the case:

Example 1.8.3 The set {y2−y, xy−y, x2+1−2y} is a lexicographic Gröbner
basis for an ideal I ⊆ R[x, y]. We solve y2− y = 0 and see that y = 0 and y = 1
are solutions. The point (1, 1) is in V (I) ⊆ R2. However, there is no solution
with y = 0 over the real numbers.

Example 1.8.4 Let I = 〈xy − 1〉 ⊆ C[x, y]. The generator is already a lexico-
graphic Gröbner basis. We conclude that I ∩ C[y] = 〈∅〉 = {0}. Any choice of
y gives a solution to the elimination ideal. If we choose a value for y then the
equation xy − 1 = 0 tells us the value of x. However, if y = 0 was chosen there
is no solution for x.

The first example shows that the ideal must be algebraically closed for all
solutions to extend, while the second shows that it is possible that not every
point lifts in the case where we have more solutions than a finite set of points.

In the rest of this subsection we use the complex numbers C, but any alge-
braically closed field will suffice. We will use the following classic result without
proof:

Theorem 1.8.5 (Hilbert’s Nullstellensatz) Let I ⊆ C[x1, . . . , xn] be an
ideal. If f ∈ C[x1, . . . , xn] is zero on all points in V (I) then there exists N ∈ N

such that fN ∈ I.

Corollary 1.8.6 Let I ⊆ C[x1, . . . , xn] be an ideal and ≺ a term ordering.
Then V (I) ⊆ Cn is a finite set ⇔ dimC(C[x1, . . . , xn]/I) < ∞ ⇔ |std≺(I)| <
∞.
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Proof. The last two statements are equivalent because the standard monomials
form a vector space basis of C[x1, . . . , xn]/I by Lemma 1.6.10. If V (I) ⊆ Cn

is infinite and dimC(C[x1, . . . , xn]/I) =: d finite then we choose d + 1 point
in V (I) and for each point pi we construct a polynomial fi ∈ C[x1, . . . , xn]
which take the value 1 at pi and zero on all other chosen points. These d + 1
polynomials are linearly independent in C[x1, . . . , xn]/I since all f ∈ I vanishes
at the points. This contradicts the space having dimension d.

On the other hand suppose V (I) ⊆ Cn is finite. For each coordinate di-
rection xi we choose a polynomial fi ∈ C[xi] being zero on the projection of
V (I) to that coordinate. We also have that fi is zero on V (I). By Hilbert’s
Nullstellensatz there exists Ni ∈ N such that fNi

i ∈ I. The term in≺(f) only
involves the variable xi. Therefore, the ith exponent of standard monomial in
std≺(I) is bounded. Since this holds on all coordinates xi, there can be only
finitely many standard monomial. 2

Corollary 1.8.7 Let I ⊆ C[x1, . . . , xn] be an ideal with dimC(C[x1, . . . , xn]/I) <
∞ and J = I ∩ C[xn]. If an ∈ V (J) ⊆ C1 then there exists a1, . . . , an−1 ∈ C

such that (a1, . . . , an) ∈ V (I) ⊆ Cn.

Proof. The variety V (I) is finite set of points, and so is the projection of these
points onto the last coordinate. Let p1, . . . , pm be these projected points. The
polynomial f =

∏m
i=1(xn − pi) is zero on the projected points. If an does not

lift, then f is non-zero on an. The polynomial is zero on all points in V (I) and
by Hilbert’s Nullstellensatz there exists N ∈ N such that fN ∈ I. It follows
that fN ∈ J . But fN (an) 6= 0. This contradicts that an ∈ V (J). 2

In general the elimination ideal defines the “Zariski closure” of the projection of
V (I). Even with the limitations described above, lexicographic Gröbner bases
are the first choice of tool for solving polynomial systems algebraically.
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2 Lattices, convexity and Robbiano’s Theorem

We have seen in Exercise 7 of Sheet 1 that vectors can be used to construct
termorders. In this section we will prove Theorem 2.3.5 which says that every
termorder can be represented by a matrix.

2.1 Lattices

In this section we introduce lattices. They will be important later for toric
ideals, lattice ideals, integer programming and Robbiano’s characterisation of
term orders. Typically a lattice will sit inside some Rn as a subgroup.

Definition 2.1.1 A group L is called a lattice if it is isomorphic to the group
Zm for some m ∈ N. The rank of the lattice is the number m. A set
{b1, . . . , bm} ⊆ L is called a (lattice) basis for L if L = {∑i aibi : ai ∈ Z}.

Given a subset B ⊆ Zn we let 〈B〉 denote the smallest subgroup of Zn

containing B. We call B a generating set for 〈B〉. We will prove that 〈B〉 is
a lattice (Theorem 2.1.2) and see how to compute a lattice basis in case B is
finite (Algorithm 2.1.6).

Theorem 2.1.2 Every subgroup G ⊆ Zn is a lattice of rank at most n.

Proof. Let for i = 1, . . . ,m the function πi : Z
n → Z be the projection on the

ith coordinate and Si := πi(G∩({0}i−1×Zn−i+1)). For i = 1, . . . ,m if Si 6= {0}
we construct a bi as follows and collect these in a set B. The group Si ⊆ Z is
generated by one element a ∈ Z (as a ring Z is a principal ideal domain). We
choose bi ∈ G∩({0}i−1×Zn−i+1) such that πi(bi) = a. In this way we construct
at most n vectors bi. We claim that 〈B〉 = G and the vectors are independent.
This would prove that G is isomorphic to Zm with m = |B| ≤ n.

To show that B is independent, let
∑

j∈J cjbj = 0 be a dependency with
cj ∈ Z \ {0} and J 6= ∅ minimal. Let j′ be the smallest element of J . We
have that the j′th coordinate of bj′ is non-zero by construction. But this is a
contradiction, since all other bj in the sum are zero on the j′th coordinate.

To show that B generates G, suppose not and let i be the largest index such
that G ∩ ({0}i−1 × Zn−i+1) \ 〈B〉 6= ∅, and pick an element v in the difference.
Since i is largest vi 6= 0 and therefore Si 6= {0}meaning that we have introduced
a bi to B. We now subtract bi a suitable number of times from v to get v′ with
v′i = 0 and v′ ∈ ({0}i−1 × Zn−i+1) \B contradicting the maximality of i. 2

Remark 2.1.3 For the experts: Every submodule of a free module of rank
n over a principal ideal domain is free with rank at most n. The proof is a
straight forward generalization of the proof above. Important is that the ring
is a principal ideal domain. In the following we will need that the ring is a
Euclidean domain which is a slightly stronger condition.

In the rest of this section we explain the theorem by doing computations
with lattices using the Gauss elimination algorithm over the integers.
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Let us consider a matrix A ∈ Zd×n and let a and b be two non-zero entries of
the same column. Recall that the Euclidean algorithm run on two integers a, b ∈
Z produces gcd(a, b) and an invertible matrix M ∈ Z2×2 such that

[

gcd(a, b)
0

]

=

M

[

a
b

]

. Actually the Euclidean algorithm applies row operations to

[

a
b

]

to

obtain the gcd and a zero entry. For example

[

54
21

]

∼
[

12
21

]

∼
[

12
9

]

∼
[

3
9

]

∼
[

3
0

]

Applying the same operations to A we obtain a zero entry in A. Doing this
systematically we get an integer matrix in row echelon form. We have described
an algorithm with the following specification:

Algorithm 2.1.4 (Matrix reduction over Z)
Input: A matrix A ∈ Zd×n.
Output: A matrix A′ ∈ Zd×n and an invertible (over Z) matrix U ∈ Zd×d

such that A′ = UA and A′ is in row echelon form.

Example 2.1.5 We do the reduction:








6 6 1 0 0 0
4 −6 0 1 0 0
0 10 0 0 1 0
9 −1 0 0 0 1









∼









2 12 1 −1 0 0
4 −6 0 1 0 0
0 10 0 0 1 0
9 −1 0 0 0 1









∼









2 12 1 −1 0 0
0 −30 −2 3 0 0
0 10 0 0 1 0
9 −1 0 0 0 1









∼









2 12 1 −1 0 0
0 −30 −2 3 0 0
0 10 0 0 1 0
1 −49 −4 4 0 1









∼









0 110 9 −9 0 −2
0 −30 −2 3 0 0
0 10 0 0 1 0
1 −49 −4 4 0 1









∼









1 −49 −4 4 0 1
0 −30 −2 3 0 0
0 10 0 0 1 0
0 110 9 −9 0 −2









∼









1 −49 −4 4 0 1
0 30 2 −3 0 0
0 10 0 0 1 0
0 110 9 −9 0 −2









∼









1 −49 −4 4 0 1
0 0 2 −3 −3 0
0 10 0 0 1 0
0 110 9 −9 0 −2









∼









1 −49 −4 4 0 1
0 10 0 0 1 0
0 0 2 −3 −3 0
0 0 9 −9 −11 −2









to get









1 −49
0 10
0 0
0 0









=









−4 4 0 1
0 0 1 0
2 −3 −3 0
9 −9 −11 −2

















6 6
4 −6
0 10
9 −1









with det









−4 4 0 1
0 0 1 0
2 −3 −3 0
9 −9 −11 −2









= ±1.

Algorithm 2.1.6 (Lattice basis)
Input: A finite generating set {v1, . . . , vs} for a subgroup G ⊆ Zn.
Output: A lattice basis {b1, . . . , bm} for G.

• Write the generating set in the rows of an s× n matrix A.

• Let {b1, . . . , bm} be the non-zero rows of A′ computed by Algorithm 2.1.4.

Proof. Since {b1, . . . , bm} was obtained from {v1, . . . , vs} by multiplying with
an invertible Z-matrix, these sets generate exactly the same group. Further-
more, coming from a reduced matrix the elements {b1, . . . , bm} are linearly
independent over Q and must therefore generate a lattice of rank m. 2
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The following corollary follows immediately from the algorithm:

Corollary 2.1.7 Every finitely generated subgroup of Zn is a lattice.

Example 2.1.8 It follows from the computation in Example 2.1.5 that the
groupG ⊆ Z2 generated by {(6, 6), (4,−6), (0, 10), (9,−1)} has {(1,−49), (0, 10)}
as a lattice basis.

Theorem 2.1.2 now follows as a corollary:

Corollary 2.1.9 Every subgroup G ⊆ Zn is a lattice.

Proof. Choose an R vector basis of B = {b1, . . . , br} ⊆ G for spanR(G). Every
g ∈ G can now be written as an R-linear combination of vectors inB. Separating
the fractional parts from the integral parts of the coefficients g can be written
as a sum of an element in spanZ(B) and an element in {∑i cibi : ci ∈ [0, 1)}∩G.
The last set is finite because {∑i cibi : ci ∈ [0, 1)} is bounded on all coordinates.
Hence G is a subgroup of Zn generated by the finite set ({∑i cibi : ci ∈ [0, 1)}∩
G) ∪B. By Corollary 2.1.9 G is a lattice. 2

Corollary 2.1.10 For a matrix A ∈ Rd×n the intersection ker(A) ∩ Zn is a
lattice (called the lattice kernel of A).

Proof. We observe that ker(A)∩Zn is subgroup of Zn and apply Corollary 2.1.9.
2

If the matrix has entries in Z we can even compute a basis for ker(A) ∩ Zn:

Algorithm 2.1.11 (Lattice kernel)
Input: A matrix A ∈ Zd×n.
Output: A lattice basis {b1, . . . , bm} for ker(A) ∩ Zn.

• Let B := AT .

• Compute B′ and U as in Algorithm 2.1.4.

• Let {b1, . . . , bm} be the last n− rank(B) rows of U .

Proof. We first observe that the rank of B equals the number of non-zero rows
in B′ because these rows are independent. The zero rows of B′ are gotten by
multiplying the last n− rank(B) rows of U with B. This shows that these rows
of U are indeed in ker(A)∩Zn. They are also independent. It remains to show
that any element v of ker(A) ∩ Zn can be written in this basis. This is indeed
the case since any v ∈ Zn can be written as a Z-linear combination of all rows
of U , since U is invertible over Z. Furthermore if a row outside ker(A) was
used, then v would have been outside as well, since the rows of U form a basis
of Rn. 2

Example 2.1.12 The computation in Example 2.1.5 shows that {(2,−3,−3, 0),

(9,−9,−11,−2)} is a lattice basis of the lattice kernel of

[

6 4 0 9
6 −6 10 −1

]

.
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Definition 2.1.13 A lattice L ⊆ Zn is called saturated if L = Zn ∩ spanR(L).

Lemma 2.1.14 Any lattice basis of a saturated lattice L ⊆ Zn can be completed
to a basis of Zn. In particular the quotient group Zn/L is a lattice.

Proof. We first compute a vector space basis for spanR(L)
⊥ of integer vectors

either by using Algorithm 2.1.11 or standard Gauss elimination scaling the
result until it becomes integral. We write the results as rows in a matrix A.
We then use Algorithm 2.1.11 to compute a lattice basis of ker(A) ∩ Zn =
Zn ∩ spanR(L) = L. We did this by picking rows of U . We observe that the
remaining rows of U complete the obtained basis to a lattice basis of Zn. The
same set of vectors will complete the original lattice basis to a lattice basis of
Zn. Their cosets are a lattice basis for the quotient group Zn/L. 2

Example 2.1.15 Let’s complete {(2,−3,−3, 0), (1, 3, 1,−2)} (which generate
a saturated lattice L) to a basis of Z4. We compute the generators {(2, 4/3, 0, 3),
(1,−1, 5/3,−1/6)} for the orthogonal complement L⊥. After clearing denomi-
nators we get {(6, 4, 0, 9), (6,−6, 10,−1)}. The computation in Example 2.1.5
shows that the last two rows of the computed 4× 4 matrix is a lattice basis of
spanZ{(2,−3,−3, 0), (1, 3, 1,−2)}. The remaining two rows complete this to a
basis of Z4. Hence {(2,−3,−3, 0), (1, 3, 1,−2), (−4, 4, 0, 1), (0, 0, 1, 0)} is also a
lattice basis of Z4.

2.2 Convexity

Definition 2.2.1 A set X ⊆ Rn is called convex if for every choice of x, y ∈ X
the line segment {tx+ (1− t)y : t ∈ [0, 1]} between x and y is contained in X.

We note that an intersection of convex sets is convex.

Definition 2.2.2 Let X ⊆ Rn. The convex hull of X is defined as the inter-
section of all convex sets containing X. That is, it is the smallest convex set
containing X. We denote it by conv(X).

The following separation theorem is intuitively “obvious” but not so easy
to prove.

Theorem 2.2.3 Let A,B be convex subsets of Rn. If A ∩ B = ∅ then there
exists a hyperplane H dividing Rn into two pieces H− and H+ such that A ⊆
H+ ∪H and B ⊆ H− ∪H.

We shall prove the theorem in the special case of Proposition 2.2.5 below. For
the proof we need the two dimensional case as stated in Lemma 2.2.4.

Lemma 2.2.4 Let X ⊆ R2 be a convex subset not containing any points on
{(x, 0) : x < 0}. Then there exists N ∈ R2 \ {0} such that ∀x ∈ X : N · x ≤ 0.
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Proof. Without loss of generality we may assume that X is invariant under
scaling by a positive number. That is X = {sx : x ∈ X, s ∈ R>0}. Identifying
R2 with the complex plane in the standard way, the principal argument function
Arg : X \ {0} → (−π, π) is a well-defined continuous function on X \ {0}. Let
r = inf(Arg(X \ {0})) and R = sup(Arg(X \ {0})). If R > π + r then the
four values (R + r)/2 ± π/2 ± ε are all in the interval (r,R) ⊆ Arg(X \ {0})
for ε > 0 sufficiently small. Hence the values are attained by four points on
the unit circle. The convex hull of these four points is a rectangle contained
in X with 0 in its interior. This contradict {(x, 0) : x < 0} ∩ X = ∅. Hence
R ≤ π + r. We now choose N = (−cos( r+R

2 ),−sin( r+R
2 )). It is now an easy

trigonometric exercise to check the statement ∀x ∈ X : N · x ≤ 0. A drawing
makes the situation clear. 2

Proposition 2.2.5 Let X ⊆ Rn be a convex set and let v ∈ Rn \ {0} be a
generator of the (relatively open) half-line h = {tv|t ∈ R>0}. If X ∩ h = ∅ then
there exists an N ∈ Rn \ {0} such that ∀x ∈ X : N · x ≤ 0.

Proof. For n = 0 the preassumptions cannot be fulfilled, so the theorem is
trivially true. For n = 1 we may choose N = v. For n = 2 we may, after a linear
change of coordinates, assume that h = −R<0 × {0} and apply Lemma 2.2.4.

For n ≥ 3 the proof goes by induction. We choose a two-dimensional plane
H containing h. Now H ∩ X is convex in H and does not intersect h ⊆ H,
so we may apply the proposition to H ∩ X with n = 2 and get an N ′ ∈ H
with N ′ · x ≤ 0 for all x ∈ H ∩X. We let l be the line in H perpendicular to
N ′ and observe that the two-dimensional set C := {x ∈ H : N ′ · x > 0} does
not intersect X. We now consider the image π(X) of X under the orthogonal
projection π : Rn → l⊥. The image π(X) is convex. Moreover, since C∩X = ∅,
C projects to a half line in l⊥ not intersecting π(X). We apply the induction
hypothesis and get an N ∈ l⊥ \ {0} with the property N · x ≤ 0 for every
x ∈ π(X). Since N is perpendicular to l this also holds for every x ∈ X. 2

We will use Proposition 2.2.5 in the next section. Except from the next
section most of our convex sets will be polyhedra. For polyhedra we can get
away with many arguments without using analysis. We will see this in Section 3.

2.3 Robbiano’s characterization of term orders

Let A ∈ Rd×n be a matrix with ker(A) ∩ Zn = {0} and the first non-zero entry
of every column being positive. We define the matrix term ordering ≺A by
xu ≺A xv ⇔ Au <lex Av, where <lex is the lexicographic ordering on Rd.

That is, to compare xu and xv we first compare with respect to the first row
of A. If we have a tie we continue to the second row and so on. It is left to the
reader to show that this is in fact a term order.

Lemma 2.3.1 A matrix term ordering is a term ordering.

We notice that the two conditions on A (on lattice kernel and positivity of first
entry of any column) are necessary to present a term ordering since term orders
are antisymmetric and have 1 � xu.
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Example 2.3.2 The lexicographic term ordering ≺lex is defined by the identity
matrix I. That is, ≺lex=≺I .

Example 2.3.3 The graded reverse lexicographic term ordering on k[x1, . . . , x4]
is represented by the matrix:









1 1 1 1
0 0 0 −1
0 0 −1 0
0 −1 0 0









Example 2.3.4 Let A ∈ Rd×n represent a term ordering ≺A and let ω ∈ Rn
≥0

be a vector. Let A′ ∈ R(d+1)×n be the matrix gotten by prepending ω as a
first row to A. Then, using the definition from Sheet 1, Exercise 7, we have
(≺A)ω =≺A′ .

Theorem 2.3.5 below says that every term ordering can be gotten as a ma-
trix term ordering. Robbiano was not the first person to prove this theorem
but it has become known as Robbiano’s characterization of term orders in the
computational algebra community. Robbiano’s rediscovery emphasizes the im-
portance of convex geometry and is the justification for most of the material in
this course.

Theorem 2.3.5 Every term order ≺ on k[x1, . . . , xn] is a matrix term order.
That is, there exists a matrix A ∈ Rd×n such that ≺A=≺.

By a Laurent monomial we mean a monomial of the form xv where v ∈ Zn

with possibly negative exponents. For the purpose of proving the theorem we
need to extend our notion of orderings and identify Laurent monomials with
the points of a lattice.

Definition 2.3.6 An admissible ordering � on a group L is a total ordering
on L respecting addition. An admissible ordering � on the Laurent monomials
(with fixed n) is a total ordering respecting multiplication.

Lemma 2.3.7 Let a, b ∈ Zn and ≺ be an admissible ordering. Suppose xa ≺ 1
and xb ≺ 1. Then xa+b ≺ 1.

Proof. We have xa+b = xaxb ≺ xa · 1 = xa ≺ 1. 2

We notice that every term ordering extends uniquely to an admissible ordering
on Laurent monomials by xa−b ≺ xc−d ⇔ xa+d ≺ xc+b for a, b, c, d ∈ Nn.

Proof of Theorem 2.3.5 We prove the theorem under the more general as-
sumption that ≺ is an admissible ordering of Laurent monomials. The proof
goes by induction. For n = 1 we choose either A = [1] or A = [−1] depending
on whether 1 ≺ x1 or not.

For n ≥ 2 we consider the cone X ⊆ Rn of points spanned positively
by the set G = {u ∈ Zn : xu ≺ 1}, meaning X := {∑m

i=1 aigi : m ∈
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N \ {0}, ai ∈ R>0, gi ∈ G}. This set is clearly convex. We now argue that
0 6∈ X. Suppose we could find a finite subset of {g1, . . . , gm} ⊆ G and co-
efficients c1, · · · , cm ∈ R>0 with

∑

i gici = 0 and m > 0. Let H be the
matrix with columns g1, . . . , gm. Using linear algebra it is possible to find a
parametrisation ϕ : x 7→ Cx of Nullspace(H), with C having entries from Q.
Since (c1, · · · , cm) ∈ Image(ϕ), perturbing the parameters slightly we can get
a rational point (c′1, . . . , c

′
m) ∈ Qm

>0 ∩ Nullspace(H). Scaling we get a point
(c′′1, . . . , c

′′
m) ∈ Nm

>0 ∩ Nullspace(H) and Applying Lemma 2.3.7 repeatedly, we
get for every i that xc

′′

i gi ≺ 1. Applying it further we get x
∑

i gic
′′

i ≺ 1. But this
is a contradiction since

∑

i gic
′′
i = 0. We conclude that 0 6∈ X.

Pick a line passing through the origin. Since X is convex with 0 6∈ X one
of its two half lines does not intersect X. We apply Proposition 2.2.5 and
get a vector N 6= 0 such that ∀x ∈ X : N · x ≤ 0. We use N as the first
row of the matrix A. To get the remaining rows we notice that N⊥ ∩ Zn is a
lattice and choose a basis for it {b1, . . . , br} with (r < n) (Corollary 2.1.10).
Using Lemma 2.1.14 we extend the basis to a basis for Zn and write it in the
columns of a matrix B ∈ Zn×n. The order ≺ induces an admissible ordering on
Zr. By the induction hypothesis there exists some matrix A′ representing the
restricted order (in the basis {b1, . . . , br}). Let B′ be the first r rows of B−1.
To compare vectors in N⊥ we multiply them with A′B′ and compare the result
lexicographically. We let A′B′ be the remaining rows of A. To prove that ≺A

equals ≺ let u ∈ Zn. It suffices to show xu ≺ 1 ⇒ xu ≺A 1. This is true since
xu ≺ 1 ⇒ u ∈ G ⊆ X ⇒ N ·u ≤ 0. If N ·u < 0 then xu ≺A 1. If N ·u = 0 then
this also holds since by induction ≺A′ equals ≺ in the sublattice N⊥ ∩ Zn. 2
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3 Polyhedral geometry

3.1 Polyhedra

Definition 3.1.1 Let u ∈ Rn and r ∈ R. We define the following sets:

• Hu,r := {x ∈ Rn : u · x = r}.

• H≤
u,r := {x ∈ Rn : u · x ≤ r}.

• H<
u,r := {x ∈ Rn : u · x < r}.

We also define H≥
u,r := H≤

−u,−r and H>
u,r = H<

−u,−r. If u 6= 0 then Hu,r is called

a hyperplane, H≤
u,r a closed half space and H<

u,r an open halfspace.

If we equip Rn with its usual Euclidean topology, then an open halfspace is
open since every point in the halfspace has an ε-neighbourhood contained in
the half space. Furthermore, a closed halfspace is the complement of an open
halfspace and is therefore closed.

Definition 3.1.2 A subset P ⊆ Rn is called a polyhedron if it is an intersection
of finitely many closed half spaces. For a matrix A ∈ Rm×n and b ∈ Rm we use
the notation: PA,b :=

⋂m
i=1H

≤
Ai·,bi

= {x ∈ Rn : Ax ≤ b}. If b is the zero vector,
then PA,b is called a polyhedral cone.

In particular, if we intersect one closed half space we get that every closed
halfspace is a polyhedron. If we intersect zero closed halfspaces we get that
Rn is a polyhedron (by convention). If we intersect halfspaces with empty
intersection we get that ∅ is polyhedron. Finally, any (affine) linear subspace
of Rn is a polyhedron. Notice that A is allowed having rows being zero.

We observe that polyhedra are convex sets since they are intersections of
convex sets.

Algorithm 3.1.3 (Fourier-Motzkin)
Input: A matrix A ∈ Rm×n and b ∈ Rm defining a polyhedron PA,b.
Output: A matrix A′ ∈ Rm′×(n−1) and b′ ∈ Rm′

such that π(PA,b) = PA′,b′

where π : Rn → Rn−1 is the projection (x1, . . . , xn) 7→ (x1, . . . , xn−1).

• Rescale, without changing PA,b, the rows of A and entries of b positively
so that the nth entry of each row of A is either 0,−1 or 1.

• Let A′ be a matrix without rows and b′ a vector with no entries.

• For i = 1, . . . ,m

– If(Ain = 0)

∗ Append the row π(Ai·) to A′ and append the entry bi to b′.

– else

∗ For j = i+ 1, . . . ,m
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Figure 4: The polyhedra, and constructed inequalities of Example 3.1.4.

· If(Ain + Ajn = 0) append π(Ai· + Aj·) to A′ and bi + bj to
b′.

Proof. The algorithm clearly terminates. We only need to prove that the output
satisfies the specifications.

We first argue that π(PA,b) ⊆ PA′,b′ . We must show that the projection of
a point x ∈ PA,b satisfies the new constraints. This is true since the equation
(Ai·+Aj·) ·x ≤ bi+bj is implied by the equations of PA,b and it does not involve
xn. Similarly for the other type of equation introduced to A′ and b′.

Conversely, let (x1, . . . , xn−1) ∈ PA′,b′ . We wish to argue that we can find
xn such that (x1, . . . , xn) ∈ PA,b. After the first rewrite, there are three types
of equations described by A and b. The first type does not involve xn, so they
are satisfied for every choice of xn. The second type says that xn should be
≥ some values M ⊆ R depending on (x1, . . . , xn−1). The last that xn should
be ≤ some values M ′ ⊆ R. Having a valid choice for xn is exactly possible
when ∀(a, b) ∈ M ×M ′ : a ≤ b. This translates into the |M | · |M ′| inequality
conditions on x1, . . . , xn−1 that we appended to A′ and b′. Therefore xn can be
chosen. 2

Example 3.1.4 Using Algorithm 3.1.3 we project the polyhedron given by:













−1 0
−1/2 1
0 1
1 1
1/2 −1













[

x1
x2

]

≤













−1
5/2
4
8

−1/2













and get the following system describing the projection:









−1
0
1/2
3/2









[

x1
]

≤









−1
2
7/2
15/2









.

The first inequality was transferred directly, while the other three came from
combining the 5th inequality with inequality 2-4. See Figure 4.
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Corollary 3.1.5 Let PA,b ⊆ Rn be a polyhedron. The projection of PA,b to any
subset of its coordinates is a polyhedron. If PA,b is a polyhedral cone then so is
its projection.

Proof. The corollary follows immediately from Algorithm 3.1.3. If PA,b is a cone
we may without loss of generality assume that b = 0. We observe by inspecting
the algorithm that the b′ produced is also 0 and the projection is a cone. 2

Theorem 3.1.6 The image of a polyhedron PA,b ⊆ Rn under an affine trans-
formation ϕ : Rn → Rm is a polyhedron. If PA,b is a polyhedral cone and ϕ a
linear transformation then ϕ(PA,b) is a polyhedral cone.

Proof. Suppose ϕ is given by x 7→ Cx + d for some matrix C ∈ Rm×n and
d ∈ Rm. Consider the graph of the function ϕ over PA,b:

{(x, y) ∈ Rn+m : ϕ(x) = y∧x ∈ PA,b} = {(x, y) ∈ Rn+m : Cx−y = −d∧Ax ≤ b}.

This is clearly a polyhedron. Its projection onto the last m coordinates is the
image ϕ(PA,b). By Corollary 3.1.5 this projection is a polyhedron.

If PA,b is a polyhedral cone and ϕ a linear transformation we may without
loss of generality assume that b = 0. Since also d = 0, the graph we are project-
ing is a polyhedral cone. Its projection is a polyhedral cone by Corollary 3.1.5.
2

Definition 3.1.7 Let V ⊆ Rn. We define the cone spanned by V as follows:

cone(V ) = {
d

∑

i=1

civi : d ∈ N, vi ∈ V, ci ∈ R≥0}.

Definition 3.1.8 A bounded polyhedron P is called a polytope.

Lemma 3.1.9 Let X ⊆ Rn be a finite set of points. Then

conv(X) = {
∑

p∈X

cpp : cp ∈ R≥0,
∑

p∈X

cp = 1}.

Proof. Left to the reader. 2

Theorem 3.1.10 The convex hull of a finite set X ⊆ Rm of points is a poly-
tope. The cone spanned by a finite set V ⊆ Rm of vectors is a polyhedral cone.

Proof. By Lemma 3.1.9 conv(X) is the image of the polyhedron {c ∈ R
|X|
≥0 :

∑|X|
i=1 ci = 1} under the linear map defined by the elements in X. By Theo-

rem 3.1.6 this image is a polyhedron. To prove that it is bounded, observe that
X is bounded and that a ball containing X will also contain conv(X).

Similarly, cone(V ) is the image of the polyhedral cone R
|V |
≥0 under a linear

transformation and therefore a polyhedral cone by Theorem 3.1.6. 2
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Figure 5: Three polyhedral cones and their duals, see Example 3.1.4.

Definition 3.1.11 Let P1 and P2 be polyhedra in Rn. The Minkowski sum of
P1 and P2 is defined as

P1 + P2 := {p1 + p2 : p1 ∈ P1, p2 ∈ P2}.

Proposition 3.1.12 The Minkowski sum of two polyhedra P1 and P2 in Rn is
a polyhedron. If P1 and P2 are polyhedral cones, then so is P1 + P2.

Proof. The cartesian product P1×P2 in Rn×Rn is a polyhedron. The function
ϕ : Rn × Rn → Rn given by (x, y) 7→ x + y is linear. The image ϕ(P1 × P2)
equals P1 + P2. This image is a polyhedron by Theorem 3.1.6. Furthermore, if
P1 and P2 are polyhedral cones, then so is the image. 2

3.2 Cone duality

The purpose of this subsection is to prove the converse of Theorem 3.1.10.

Definition 3.2.1 Let C ⊆ Rn be a polyhedral cone. We define its dual cone
to be:

C∨ := {y ∈ Rn : ∀x ∈ C : x · y ≤ 0}.

Example 3.2.2 Three examples of a polyhedral cone C ⊆ R3 and its dual C∨

are shown in Figure 5. In the last example C = {0} and C∨ = R2

Proposition 3.2.3 Let C = PA,0 be a polyhedral cone for some matrix A ∈
Rm×n. Then

C∨ = cone(A1·, . . . , Am·).

In particular the dual cone C∨ is a polyhedral cone.

Proof. Let y ∈ cone(A1·, . . . , Am·) and x ∈ C. Since Ai· · x ≤ 0 for all i then
also y ·x ≤ 0 since y is a non-negative linear combination of A1·, . . . , Am·. Since
this holds for all x ∈ C we conclude that y ∈ C∨.

We observe by Theorem 3.1.10 that the right hand side is a polyhedral cone
PB,0 for some matrix B. If y ∈ Rn is not in the right hand side, then one of
the rows Bj· would have Bj· · y > 0 and Bj· · Ai· ≤ 0. The latter implies that
Bj· ∈ C. We conclude, since Bj· · y > 0, that y 6∈ C∨. 2
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Proposition 3.2.4 Let C ⊆ Rn be a polyhedral cone. Then

(C∨)∨ = C.

Proof. The inclusion ⊇ is clear since every vector in C indeed does have non-
positive dot product with vectors of C∨. Conversely, if C = PA,0 for some
matrix A ∈ Rm×n then by Proposition 3.2.3 C∨ = cone(A1·, . . . , Am·). If z ∈
(C∨)∨ then Ai· · z ≤ 0 for all i. This proves z ∈ PA,0 = C. 2

Corollary 3.2.5 Any polyhedral cone C ⊆ Rn is of the form C = cone(v1, . . . , vm)
for a finite list of vectors v1, v2, . . . , vm ∈ Rn.

Proof. By Proposition 3.2.3 the dual cone C∨ is a polyhedron of the form
C∨ = PA,0 for some matrix A ∈ Rm×n. By Proposition 3.2.4 C = (C∨)∨ and
(C∨)∨ = cone(A1·, . . . , Am·) by Proposition 3.2.3. 2

Theorem 3.2.6 Every polyhedron P ⊆ Rn has the form

P = conv(u1, . . . , ur) + cone(v1, . . . , vs).

In particular, P is the Minkowski sum of a polytope and a polyhedral cone.

Proof. We start by forming a cone C ⊆ Rn+1 with the property that C ∩
Rn × {1} = P × {1}. To be precise, if P = PA,b with A ∈ Rm×n we let
C = PA′,0 where A′ is an Rm×(n+1) with the first n columns equal to the
columns of A, and the last column equal to −b. It is straight forward to check
that C∩Rn×{1} = P×{1}. We add an additional constraint C ′ = C∩H≥

en+1,0
,

such that every point in C ′ has last coordinate non-negative.
By Corollary 3.2.5 we have C ′ = cone(w1, . . . , wt) for some wi ∈ Rn+1.

Without loss of generality we may assume that the last coordinate of each of
these vectors is either 0 or 1. Let π : Rn+1 → Rn be the projection onto the
first n coordinates. We now construct the ui and vi vectors as follows. If wi

has last coordinate 1 then we construct a u vector π(wi). If the last coordinate
was 0 we construct the v vector π(wi). In total we have constructed t = r + s
vectors. We now prove the equality

P = conv(u1, . . . , ur) + cone(v1, . . . , vs).

To prove the inclusion ⊇ let p be obtained as a valid non-negative combina-
tion of u1, . . . , ur and v1, . . . , vs. Using the same coefficients for a combination
of w1, . . . , wt we get (p1, . . . , pn, 1) in C ∩ Rn × {1} = P × {1}. This proves
p ∈ P . On the other hand if p ∈ P then (p1, . . . , pn, 1) ∈ C is a non-negative
linear combination of w1, . . . , wt. We use the same coefficients on u1, . . . , ur
and v1, . . . , vs and get p as a non-negative combination. Furthermore, the coeffi-
cients of u1, . . . , us sum to 1. This proves p ∈ conv(u1, . . . , ur)+cone(v1, . . . , vs).
Finally, Theorem 3.1.10 says that we have written P as the sum of a polytope
and a polyhedral cone. 2
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Remark 3.2.7 While the decomposition of Theorem 3.2.6 is not unique in
general, the cone part is. Namely, it is gotten by intersection C in the proof with
the hyperplane Hen+1,0 and projecting away the last coordinate. Equivalently,
with the notation of the proof it is PA,0. We call this cone the recession cone
R(PA,b) of PA,b.

Corollary 3.2.8 Every polytope is the convex hull of a finite set of points.

Proof. We use Theorem 3.2.6 and observe that if the cone constructed this way
is not {0} then the Minkowski sum would be unbounded, which is a contradic-
tion. 2

3.3 Dimension and faces

Definition 3.3.1 Let PA,b ⊆ Rn be a non-empty polyhedron. We define its
lineality space L(PA,b) to be ker(A).

That the lineality space is well-defined follows from the following lemma.

Lemma 3.3.2 A non-empty polyhedron PA,b ⊆ Rn is invariant under transla-
tion by exactly the vectors in L(PA,b).

Proof. If y ∈ L(PA,b) and x ∈ PA,b then Ax ≤ b and Ay = 0, implying A(x +
y) ≤ b. We conclude that x + y ∈ PA,b and that PA,b is invariant under
translation by y, meaning PA,b+y = PA,b. On the other hand suppose PA,b+y =
PA,b for some y ∈ Rn and x ∈ PA,b. Then for all s ∈ R we have A(x+ sy) ≤ b.
If Ay was non-zero, we could make the left hand side arbitrarily large. We
conclude that y ∈ ker(A). 2

Example 3.3.3 The cone R≥0×R≥0×R ⊆ R3 has the one dimensional lineality
space {0} × {0} × R.

Definition 3.3.4 We say that a polyhedral cone C is pointed if dim(L(C)) = 0.

Definition 3.3.5 The dimension of a non-empty polyhedron P ⊆ Rn is the
dimension of the smallest affine subspace of Rn containing it.

Lemma 3.3.6 (Farkas’ Lemma) Given A ∈ Rm×n and b ∈ Rm then PA,b =
∅ if and only if there exists a row vector y ∈ Rm

≥0 such that yA = 0 and yb = −1.

Proof. The “if” direction is clear because the non-negative y tells us how to
combine the equations Ax ≤ b to the impossible equation 0 ≤ −1. Conversely,
if PA,b = ∅ we can, as in the proof of Theorem 3.2.6 consider the matrix A′ ∈
Rm×(n+1) whose first n columns are the columns from A and whose last column
is −b. By the argument in the proof of Theorem 3.2.6 PA′,0 cannot contain any
point with last coordinate positive (because PA,b = ∅). Hence en+1 ∈ P∨

A′,0 =
cone(A′

1·, . . . , A
′
m·). Hence we can find y ∈ Rm

≥0 with yA = 0 and y(−b) = 1. 2

Lemma 3.3.7 Let P ⊆ Rn be a non-empty polyhedron and ω ∈ Rn. Then
maxy∈P (ω · y) is attained if and only if ω is bounded from above on P .
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Proof. Define the projection π : Rn → R by x 7→ ω ·x. By Corollary 3.1.5 π(P )
is a non-empty, (from above) bounded polyhedron in R and therefore a closed
interval with an upper end point y ∈ R. Hence ω attains its maximum in the
preimage P ∩ π−1(y). 2

Lemma 3.3.8 Let P ⊆ Rn be a non-empty polyhedron and ω ∈ Rn. Then
maxy∈P (ω ·y) is attained if and only if ω ∈ R(P )∨ (where R(P ) is the recession
cone of P ).

Proof. Let P = PA,b for some A ∈ Rm×n and b ∈ Rm. Suppose ω ∈ R(P )∨.
By Proposition 3.2.3 there exists a row vector y ∈ Rm

≥0 such that ωT = yA.
If x ∈ P then Ax ≤ b, which implies by non-negativity of entries of y that
ω · x = yAx ≤ yb. The right hand side is independent of x which means that
the linear form ω is bounded from above on P .

Conversely, suppose ω is bounded over P . Then there exists h ∈ R such
that H≥

ω,h∩P = H≤
−ω,−h∩PA,b = ∅. By Farkas’ Lemma there exists y such that

y

[

−ωT −h
A b

]

=
[

0 · · · 0 −1
]

. The first coordinate of y cannot be zero because

P 6= ∅. We conclude that ω ∈ cone(A1·, . . . , Am·) = (PA,0)
∨ = R(P )∨. 2

Definition 3.3.9 Let P ⊆ Rn be a polyhedron and ω ∈ Rn. If maxy∈P (ω · y)
is attained, the set

faceω(P ) := {x ∈ P : ω · x = maxy∈P (ω · y)}
is called a face of P . The hyperplane Hω,maxy∈P (ω·y) is called a supporting
hyperplane for P .

We observe that if maxy∈P (ω · y) is attained, then P ⊆ H≤
ω,maxy∈P (ω·y) and

faceω(P ) = P ∩Hω,maxy∈P (ω·y). Consequently, faceω(P ) is a polyhedron.

Remark 3.3.10 Most people also call the empty set ∅ a face, and give it the
name “the empty face”. We will try not to do so in these notes.

Definition 3.3.11 We define the following terms:

• A vertex of a polyhedron P ⊆ Rn is a face of P of dimension 0.

• A facet of P is a face of dimension dim(P )− 1.

• A ray of a pointed polyhedral cone C ⊆ Rn is a face of C of dimension 1.

Proposition 3.3.12 Let P ⊆ Rn be a polyhedron. Let ω, ω′ ∈ R(P )∨ such that
the faces A := faceω(P ) and B := faceω′(P ) are well-defined. Then ω′ ∈ R(A)∨.
If A ∩B 6= ∅ then A ∩B = faceω′(A).

Proof. By Lemma 3.3.8, the maximum of the linear form ω′ is attained over P
and therefore also over A. Consequently, ω′ ∈ R(A)∨. We start by observing
that since A ∩ B 6= ∅ the hyperplane H with normal ω′ and B = P ∩ H is a
supporting hyperplane for A (because the maximal value of ω′ over P is the
same as over A). It now follows that faceω′(A) = A ∩ H = (A ∩ P ) ∩ H =
A ∩ (P ∩H) = A ∩B. 2
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Proposition 3.3.13 Let u1, . . . , ur, v1, . . . , vs ∈ Rn with r ≥ 1, let

P = conv(u1, . . . , ur) + cone(v1, . . . , vs)

be a polyhedron and let ω ∈ R(P )∨ (with R(P ) being the recession cone). Then

faceω(P ) = convω·ui=U (ui) + coneω·vi=0(vi)

where U = maxi(ω · ui). Furthermore, if we have some other ω′ ∈ R(P )∨ with
faceω′(P ) = faceω(P ) then {i : ω · ui = U} = {i : ω′ · ui = maxjω

′ · uj} and
{i : ω · vi = 0} = {i : ω′ · vi = 0}.

Proof. Let p ∈ faceω(P ). Then for some non-negative choice of coefficients
p =

∑

i aiui +
∑

i bivi with
∑

i ai = 1. We wish to prove that the coefficients
are zero for the vectors not mentioned in the right hand side. If for some i
ai > 0, but with ω · ui 6= U then we could decrease ai and increase another
coefficient to reach point p′ ∈ P with bigger dot product with ω. This would
be a contradiction. Similarly, first notice that for all i:ω · vi ≤ 0 because ω
is bounded from above on P . If bi > 0 with ω · vi < 0, then we could again
increase the dot product with ω by choosing bi = 0 instead. That would be a
contradiction. Hence

faceω(P ) ⊆ convω·ui=U (ui) + coneω·vi=0(vi).

Conversely, let now p ∈ convω·ui=U (ui) + coneω·vi=0(vi) with according
choice of coefficients p =

∑

i aiui +
∑

i bivi and
∑

i ai = 1. Then ω · p =
∑

i aiω · ui +
∑

i biω · vi =
∑

i aiU +
∑

i bi0 = 1U + 0 = U = maxi(ω · ui) =
maxx∈conv(u1,...,ur)(ω ·x). This is the maximum of ω over P = conv(u1, . . . , ur)+
cone(v1, . . . , vs) because for all i:ω · vi ≤ 0.

For the second claim, suppose faceω′(P ) = faceω(P ). Because ω · vj ≤ 0 for
all j we have ui ∈ faceω(P ) iff ω · ui = maxj(ω · uj). Similarly, ui ∈ faceω′(P )
iff ω · ui = maxj(ω

′ · uj). This prove the first equality. Let p ∈ faceω′(P )
and suppose that some vi is perpendicular to ω but not ω′. Then ω′ · vi < 0,
preventing p+tvi ∈ faceω(P ) from being in faceω′(P ) for t big – a contradiction.
Similarly for vi · ω′ = 0 6= vi · ω. This proves the last equality. 2

Corollary 3.3.14 A polyhedron has only finitely many faces.

Proof. By Theorem 3.2.6 every polyhedron has the form of Proposition 3.3.13.
In Proposition 3.3.13 there is only a finite number of subsets of {u1, . . . , ur}
and {v1, . . . , vs} leading to only finitely many possible faces. 2

Lemma 3.3.15 Let a1, . . . , ar, b1, . . . , br ∈ R and A = {i : ai = maxj(aj)} and
B = {i ∈ A : bi = maxj∈A(bj)}. There exists ε ∈ R>0 such that B = {i :
ai + εbi = maxj(aj + εbj)}.

Proof. Let α = maxj(aj) and β = maxj∈A(bj). We choose ε > 0 such that for
all i we have (α − ai) > ε(bi − β) when ever (ai, bi) 6= (α, β). This is possible
since either α − ai > 0, or when not we have α − ai = 0 and bi − β < 0. We
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now observe that the right hand side {i : ai + εbi = maxj(aj + εbj)} is the
set of indices such that (1, ε) is maximized over P := {(a1, b1), . . . , (ar, br)}.
The indices of B is exactly those i for which ai = α and bi = β. Hence it
suffices to show that (α, β) is the unique optimum of (1, ε) over P . First of all
(α, β) ∈ P . Let i be given. We would like to prove that if (ai, bi) 6= (α, β) we
have (1, ε) · (α, β) < (1, ε) · (ai, bi). But this follows from the choice of ε. 2

The following corollary says that the face of a face is a face.

Corollary 3.3.16 Let P ⊆ Rn be a polyhedron. Let ω ∈ R(P )∨. Let ω′ ∈
R(faceω(P ))∨. Then F := faceω′(faceω(P )) is a face of P .

Proof. Using Theorem 3.2.6 we know that P has the form

P = conv(u1, . . . , ur) + cone(v1, . . . , vs)

and by Proposition 3.3.13 we have

faceω(P ) = convω·ui=U (ui) + coneω·vi=0(vi) and

faceω′(faceω(P )) = convω·ui=U∧ω′·ui=U ′(ui) + coneω·vi=0∧ω′·vi=0(vi)

where U = maxi(ω · ui) and U ′ = maxi:w·ui=U (ω
′ · ui).

We wish to choose ε ∈ R>0 such that ωε := ω + εω′ ∈ R(faceω(P ))∨ and
F = faceωε(P ). That ω ∈ R(P )∨ simply means that for all i:ω · vi ≤ 0 and
that ω′ ∈ R(faceω(P ))∨ means that whenever ω · vi = 0 then ω′ · vi ≤ 0. We
conclude that for ε > 0 sufficiently small we have ωε · vi ≤ 0 for all i. Hence
ωε ∈ R(faceω(P ))∨.

It suffices to prove that for ε > 0 sufficiently small

{i : ω · ui = U ∧ ω′ · ui = U ′} = {i : ωε · ui = maxi(ωε · ui)}

and
{i : ω · vi = 0 ∧ ω′ · vi = 0} = {i : ωε · vi = 0}.

The first equality follows from Lemma 3.3.15 for small ε > 0. To prove the
second, first observe that we have the inclusion “⊆”. To prove “⊇”, we choose
ε > 0 such that ε < − ω·vi

ω′·vi
whenever ω′ · vi > 0 and ω · vi < 0. Suppose that

ωε · vi = 0. We know that ω · vi ≤ 0 because ω ∈ R(P )∨ but suppose for
contradiction that w · vi < 0 then ω′ · vi > 0. Now ωε · vi = ω · vi + εω′ · vi <
ω · vi − ω · vi = 0 by the choice of ε, which is a contradiction. Hence ω · vi = 0.
2

3.4 Polyhedral complexes and fans

Definition 3.4.1 A collection Σ of polyhedra in Rn is called a polyhedral com-
plex if it satisfies:

• for A ∈ Σ every face of A is in Σ, and

• for every A,B ∈ Σ, if A ∩B 6= ∅ then A ∩B is a face of A (and of B).
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Figure 6: The polyhedral fan mentioned in Example 3.4.2.

Figure 7: The collection of cones in Example 3.4.3 not being a fan.

The support of Σ is supp(Σ) :=
⋃

A∈ΣA. A polyhedral complex is called com-
plete if its support is Rn. A polyhedral complex consisting only of polyhedral
cones is called a polyhedral fan.

Example 3.4.2 The fan in Figure 6 consists of two 2-dimensional cones, three
1-dimensional cones and one zero-dimensional cone. To actually see the cones
we need to pull them apart when drawing. We check by inspection that the
properties for being a polyhedral complex are satisfied.

Example 3.4.3 The three two-dimensional cones in Figure 7 cannot be part
of the same polyhedral complex, since the big cone intersected with one of the
small cones gives a cone which is not a face of the big cone.

Proposition 3.4.4 Let P ⊆ Rn be a polyhedron. The set of faces of P is a
polyhedral complex.

Proof. To see this recall that by Corollary 3.3.16 every face of a face A of P is
a face of P . Furthermore, by Proposition 3.3.12 if A and B are faces of P with
non-empty intersection then A ∩B is a face of A. 2

Definition 3.4.5 Let P ⊆ Rn be a polyhedron and F a face of P . We define
the normal cone of F to be

NP (F ) := {ω ∈ Rn : faceω(P ) = F}

where the closure is taken in the usual topology on Rn.

Lemma 3.4.6 Let A ∈ Rm×n and B ∈ Rm′×n such that C := {x ∈ Rn : Ax ≤
0 and Bx < 0} is non-empty, then C = {x ∈ Rn : Ax ≤ 0 and Bx ≤ 0}.

Proof. Let p ∈ C. To prove ⊇, let x ∈ Rn \ {p} such that Ax ≤ 0 and Bx ≤ 0.
The open line segment from p to x is contained in C. Therefore x ∈ C. For the
other inclusion we observe that the right hand side contains C and is closed. 2
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Proposition 3.4.7 Every normal cone NP (F ) is a polyhedral cone.

Proof. By second part of Proposition 3.3.13, a vector picks out the face F if it
satisfies a certain set of linear inequalities. Since F is a face such a vector exists
and Lemma 3.4.6 tells us that the closure of these vectors is a polyhedral cone.
2

Definition 3.4.8 The normal fan NF (P ) of a polyhedron P ⊆ Rn is the col-
lection of all normal cones of faces of P .

We state the following proposition without proof.

Proposition 3.4.9 The normal fan of a polyhedron is a polyhedral fan.

Lemma 3.4.10 For a polyhedron P ⊆ Rn we have supp(NF (P )) = R(P )∨.

Proof. Every ω in R(P )∨ defines a face of P , which proves the inclusion ⊇. To
prove ⊆, we observe that the vectors introduced on the left hand side when tak-
ing normal cones are in the closure of the vectors defining faces. The inclusion
follows since the right hand side is closed. 2

Definition 3.4.11 Let Σ1 be a polyhedral complex in Rn and Σ2 be a poly-
hedral complex in Rn′

. The product complex is defined as

Σ1 × Σ2 := {P1 × P2 : P1 ∈ Σ1, P2 ∈ Σ2}

and consists of polyhedra in Rn+n′

.

Lemma 3.4.12 Let P1 ⊆ Rn and P2 ⊆ Rn′

be polyhedra. The faces of the
polyhedron P1×P2 ⊆ Rn+n′

are exactly the products F1×F2 where F1 is a face
of P1 and F2 a face of P2.

Proof. A vector ω = ω1 × ω2 ∈ Rn × Rn′

attains its maximum over P1 × P2 in
a point p1 × p2 if and only if ω1 attains its maximum over P1 in p1 and ω2 its
maximum over P2 in p2. This proves that the faces of P1 × P2 are exactly the
product of faces of P1 and P2. 2

Lemma 3.4.13 The product complex is a polyhedral complex.

Proof. By Lemma 3.4.12 the face of a polyhedron P1×P2 in Σ1×Σ2 is of the form
F1×F2 with Fi face of Pi. Because Σ1 and Σ2 are polyhedral complexes, F1×F2

is in Σ1 ×Σ2. Suppose now that we have A1 ×A2 ∩B1 ×B2 non-empty. Then
A1∩B1 is non-empty and it must be a face of A1. Similarly, A2∩B2 is a face of
A2. By Lemma 3.4.12 the product (A1 ∩B1)× (A2 ∩B2) = A1 ×A2 ∩B1 ×B2

is a face of A1 ×A2. 2

Lemma 3.4.14 Let PA,b ⊆ Rn be a polyhedron. Let ω ∈ R(PA,b)
∨ and F =

faceω(PA,b). Let M ⊆ {1, . . . ,m} be the subset of indices i such that F ⊆ HAi·,bi.
Then F = PA,b ∩

⋂

i∈M HAi·,bi .
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Proof. The inclusion ⊆ is clear. For ⊇ we consider the situation in the subspace
⋂

i∈M HAi·,bi . Here the face is full dimensional. Let p be an interior point.
Assume that x is on the right hand side. We need to prove that ω is maximal
on x. Suppose not and consider the line segment between x and p. Continuing
it slightly, we stay in side F because p is in the interior. Using that the ω-value
is not maximal in x but is in p we get even larger ω-values on the extended line
segment. This is a contradiction. 2

Proposition 3.4.15 Let Σ be a polyhedral complex in Rn with n ≥ 1. Consider
the hyperplane H := He1,0 ⊆ Rn. The set Σ′ := {P ∩H : P ∈ Σ and P ∩H 6= ∅}
is a polyhedral complex.

Proof. Let F be a face of P∩H where P ∈ Σ. We wish to show that F ∈ Σ′. The
polyhedron P is described by list of inequalities andH by two. By Lemma 3.4.14
F is gotten by turning some of these inequalities into equations. The changed
inequalities define supporting hyperplanes for P and therefore faces of P . By
Proposition 3.4.4 the set of faces of P is a complex. Therefore the intersection
of the faces in question is a face F ′ of P . We now have F = F ′ ∩H as desired.

Let A∩H and B ∩H be elements in Σ′ with A,B ∈ Σ. Suppose that some
p ∈ (A ∩ H) ∩ (B ∩ H) 6= ∅ then also A ∩ B 6= ∅. This means that A ∩ B
is a face of A. There exists ω such that faceω(A) = A ∩ B. We claim that
faceω(A ∩ H) = faceω(A) ∩ H. To see this it suffices to prove that ω has the
same maximum over A ∩H and A. But this holds since p ∈ A ∩H. 2

Definition 3.4.16 Let Σ1 and Σ2 be polyhedral complexes in Rn. We define
their common refinement as follows:

Σ1 ∧ Σ2 := {P1 ∩ P2 : P1 ∈ Σ1, P2 ∈ Σ2, P1 ∩ P2 6= ∅}.

Proposition 3.4.17 The common refinement of two polyhedral complexes Σ1

and Σ2 in Rn is a polyhedral complex with

supp(Σ1 ∧ Σ2) = supp(Σ1) ∩ supp(Σ2).

Proof. By Lemma 3.4.13 Σ1 × Σ2 is a complex in Rn+n. Let ∆ := {(x, x) :
x ∈ Rn} ⊆ Rn+n be the “diagonal”. After a linear transformation, Proposi-
tion 3.4.15 tells us that

A := {P ∩∆ : P ∈ Σ1 × Σ2, P ∩∆ 6= ∅}

is a polyhedral complex. It is also the common refinement of Σ1×Σ2 and {∆}.
Let π : ∆ → Rn be the bijective projection on the first copy of Rn. We observe
that {π(P ) : P ∈ A} = Σ1 ∧ Σ2. This proves that Σ1 ∧ Σ2 is a polyhedral
complex. The statements about the supports follows from the definition of the
common refinement and the distributive rule for union and intersection. 2

Proposition 3.4.18 Let P1 and P2 be polyhedra in Rn. Then

NF (P1 + P2) = NF (P1) ∧NF (P2).
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Proof. By Theorem 3.2.6 we may write P1 and P2 in the form

Pi = conv(Ui) + cone(Vi)

for finite sets Ui, Vi ⊆ Rn. Hence

P = conv(u1 + u2 : (u1, u2) ∈ U1 × U2) + cone(V1 ∪ V2).

A vector ω attains its maximum over P1+P2 if and only if it attains its maximum
over P1 and over P2. Let ω pick the face faceω(P ) of P . By Proposition 3.3.13

faceω(P ) = conv(u1 + u2 : (u1, u2) ∈ U) + cone(V )

for subsets U ⊆ U1 × U2 and V ⊆ V1 ∪ V2. Here V = (V1 ∪ V2) ∩ ω⊥ =
V1 ∩ ω⊥ ∪ V2 ∩ ω⊥ and U is the set of pairs maximizing ω, and thus equal to
U ′
1×U ′

2 with U ′
i ⊆ Ui maximizing ω. By Lemma 3.4.6 the condition for a vector

ω′ to be in NP (faceω(P )) is that ω′ · (u′1 + u′2) ≥ ω′ · (u1 + u2) for (u
′
1, u

′
2) ∈ U

and (u1, u2) ∈ U1×U2, furthermore that ω′ ∈ V ⊥. Applying Proposition 3.3.13
and Lemma 3.4.6 again to P1, P2 and ω we see that this is exactly the condition
for being in both NP1(faceω(P )) and NP2(faceω(P )).

To prove that the right hand side is contained in the left hand side we
use Theorem 3.4.19 below. The supports of the two fans are equal because
supp(NF (P1 + P2)) = R(P1 + P2)

∨ = (R(P1) +R(P2))
∨ = R(P1)

∨ ∩R(P2)
∨ =

supp(NF (P1) ∩ supp(NF (P2)) = supp(NF (P1) ∧NF (P2)). 2

We present the following theorem without proof.

Theorem 3.4.19 Let Σ1 and Σ2 be polyhedral complexes with Σ1 ⊆ Σ2 and
supp(Σ1) = supp(Σ2). Then Σ1 = Σ2.
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4 The Gröbner fan of an ideal

For a polynomial f ∈ k[x1, . . . , xn] we have

faceω(NP (f)) = NP (inω(f)).

We conclude that ω and ω′ pick out the same initial form of f if and only if
faceω(NP (f)) = faceω′(NP (f)). Therefore, which initial form ω picks from
f depends on which normal cones of NP (f) the vector ω belongs to. See
Example 4.0.20 below.

In this section we will generalize the concept of a normal fan of a Newton
polytope of a polynomial, namely we will fix an ideal I ⊆ k[x1, . . . , xn] and
define its Gröbner fan. First we consider the equivalence relation on Rn:

u ∼ v ⇔ inu(I) = inv(I) (1)

with initial ideals defined as in Definition 1.6.1. In particular, for a vector
v ∈ Rn and a term ordering ≺ we consider the closure of the equivalence classes:

C≺(I) := {u ∈ Rn : inu = in≺(I)} and

Cv(I) := {u ∈ Rn : inu = inv(I)}.
We will prove the following:

• The set {u ∈ Rn : inu(I) = in≺(I)} is indeed an equivalence class. (That
is, in≺(I) is of the form inv(I) for some v ∈ Rn.)

• There are only finitely many initial ideals of the form in≺(I) and of the
form inv(I).

• For v ∈ Rn
>0 the set Cv(I) is a polyhedral cone and every face of Cv(I) is

of the form Cu(I) for some u.

• We can choose a set of cones Cv(I) which cover Rn
≥0 and form a polyhedral

fan.

The argument below for finiteness (Proposition 4.1.1) was presented by Sturm-
fels [13], while the structure of the proof that the Gröbner fan is a fan (and its
construction) comes from [7]. The original construction of the Gröbner fan is
by Mora and Robbiano [12].

Example 4.0.20 Consider the principal ideal I = 〈x + y + 2xy2 + 3x2y〉 ⊆
k[x, y]. This ideal has 9 initial ideals giving rise to 9 polyhedral cones forming
a fan as shown in Figure 8.

Example 4.0.21 Consider the ideal I = 〈x − 1, y − 1〉. The ideal has 5 ini-
tial ideals. The vectors (−1, 3) and (3,−1) pick out the same initial ideal
in(−1,3)(I) = in(3,−1)(I) = 〈1〉. The equivalence class is not convex since
1
2((−1, 3)+(3,−1)) = (1, 1) which picks out the initial ideal 〈x, y〉. See Figure 8.

Example 4.0.22 [13, Example 3.9] The ideal I = 〈x5−1+z2+y3, y2−1+z+
x2, z3 − 1 + y5 + x6〉 ⊆ Q[x, y, z] has 360 initial ideals of the form in≺(I). The
cones C≺(I) of these together with their faces form a fan shown in Figure 9.
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Figure 8: The closures of equivalence classes in Example 4.0.20 and Exam-
ple 4.0.21.

Lexicographic Lexicographic

Lexicographic

ab

c

Figure 9: The intersection of the triangle with corners (1, 0, 0), (0, 1, 0) and
(0, 0, 1) with the Gröbner fan of the ideal I of Example 4.0.22 as defined in
Definition 4.3.1.
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4.1 Finiteness

We have seen in Exercise 8 on the first sheet that for n > 1 the polynomial
ring k[x1, . . . , xn] has infinitely (in fact uncountably) many term orders. The
following shows that these only define finitely many initial ideals of a fixed ideal.

Proposition 4.1.1 Let I ⊆ k[x1, . . . , xn] be a polynomial ideal. Then I has
only finitely many initial ideals of the form in≺(I) where ≺ is a term ordering.

Proof. By contradiction. Let Σ0 be the set of initial ideals of I and suppose
that |Σ0| = ∞. In particular, I 6= 〈0〉 and we may choose a non-zero f1 ∈ I.

Each M ∈ Σ0 contains a term of f1. Hence we may choose a term m1

of f1 which is contained in infinitely many M ∈ Σ0. We let J1 = 〈m1〉 and
Σ1 := {M ∈ Σ0 : J1 ⊆ M}. Since Σ1 is infinite, there is some M1 ∈ Σ1 with
J1 ⊂ M1 (strictly). By Proposition 1.6.10 the monomials outside M1 form
a k-vector basis for k[x1, . . . , xn]/I. Therefore, since J1 ⊂ M1, the set of all
monomials outside J1 must be dependent modulo I. Consequently, there exists
a non-zero f2 ∈ I with all terms of f2 outside J1.

Each M ∈ Σ1 contains a term of f2. Hence we may choose a term m2 of
f2 which is contained in infinitely many M ∈ Σ1. We let J2 = 〈m1,m2〉 and
Σ2 := {M ∈ Σ1 : J2 ⊆ M}. Since Σ2 is infinite, there is some M2 ∈ Σ2 with
J2 ⊂ M2 (strictly). By Proposition 1.6.10 the monomials outside M2 form a k-
vector basis for k[x1, . . . , xn]/I. Therefore, since J2 ⊂ M2, the set of monomials
outside J2 must be dependent modulo I. Consequently, there exists a non-zero
f3 ∈ I with all terms of f3 outside J2.

Continuing like this we construct an infinite sequence of strict inclusions:

J1 ⊂ J2 ⊂ J3 . . .

This contradicts Corollary 1.2.5. 2

4.2 Every C≺(I) is of the form Cv(I)

Recall that we use the notation G≺(I) for the reduced Gröbner basis of I
with respect to ≺. Furthermore, for f =

∑

u∈U cux
u with support U we call

maxu∈U (v · u) the v-degree of f .

Lemma 4.2.1 [7, Lemma 2.10] Let I ⊆ k[x1, . . . , xn] be an ideal, ≺ a term
ordering and v ∈ Rn. Then

inv(I) = in≺(I) ⇔ ∀g ∈ G≺(I) : inv(g) = in≺(g).

Proof. ⇒: Let g ∈ G≺(I). Since G≺(I) is reduced only one term of g is in in≺(I),
namely in≺(g). The initial form inv(g) is in the monomial ideal inv(I) = in≺(I).
Hence every term of inv(g) is in in≺(I). We conclude that inv(g) = in≺(g).

⇐: To show inv(I) ⊇ in≺(I) we use that in≺(I) is generated by in≺(g) with
g ∈ G≺(I) because G≺(I) is a Gröbner basis. Since in≺(g) = inv(g) ∈ inv(I) the
inclusion follows.
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To show inv(I) ⊆ in≺(I) we let f ∈ I\{0} and wish to show inv(f) ∈ in≺(I).
Using the division algorithm with ≺ we may write f =

∑

j mjgj + 0 where mj

is a term and gj ∈ G≺(I). By Lemma 1.5.5 we have in≺(mjgj) � in≺(f)
but the same argument shows that since the v-degree of p in Algorithm 1.5.1 is
non-strictly decreasing and in≺(gj) has maximal v-degree among terms of gj we
have that the v-degree of f is non-strictly larger than the v-degree of each mjgj .
(Left to the reader.) Therefore inv(f) =

∑

j∈J inv(mjgj) =
∑

j∈J mj inv(gj) for
a suitable index set J . This proves inv(f) ∈ inv(I). 2

Lemma 4.2.2 Let A ∈ Rd×n define a matrix term ordering ≺A and u, v ∈ Nn.
If xu ≺A xv then for ε ∈ R>0 sufficiently small

(ε0A1· + ε1A2· + · · ·+ εd−1Ad·) · (u− v) < 0.

Proof. We wish to prove (ε0, ε1, . . . , εd−1)A(u − v) < 0 for ε > 0 sufficiently
small. The first non-zero entry of the vector A(u−v) is negative by assumption.
Call it −a. Let M > 0 be a bound on the absolute value of the other entries.
For 0 < ε < min(1, (a/(Mn))) we have εi < a/(Mn) for i ≥ 1. This strictly
bounds the contribution of the positive terms to the dot product above by a.
2

Proposition 4.2.3 Let I ⊆ k[x1, . . . , xn] be an ideal and ≺ a term ordering.
There exists a vector ω ∈ Rn

>0 such that inω(I) = in≺(I).

Proof. By Theorem 2.3.5 there exists a matrix A ∈ Rd×n representing ≺ such
that ≺A=≺. Applying Lemma 4.2.2 several times we can find a ε such that
ω := (ε0A1· + ε1A2· + · · ·+ εd−1Ad·) such that inω(g) = in≺A

(g) for all g in the
finite set G≺(I). By Lemma 4.2.1 inω(I) = in≺(I). 2

We conclude that every C≺(I) is of the form Cv(I) for some v ∈ Rn.

Corollary 4.2.4 [7, Corollary 2.11] Let ≺ be a term order and v ∈ Rn. Then

v ∈ C≺(I) ⇔ ∀g ∈ G≺(I) : in≺(g) = in≺(inv(g)).

Proof. By Lemma 4.2.1 C≺(I) is the closure of the set of

{v ∈ Rn : ∀g ∈ G≺(I) : inv(g) = in≺(g)}.

These conditions translate into a set of linear inequalities on v. By Proposi-
tion 4.2.3 the set is non-empty and by Lemma 3.4.6 its closure is gotten by
making the strict inequalities non-strict. This translates into the short expres-
sions “in≺(g) = in≺(inv(g))”. (Left to the reader.) 2

Since the condition in≺(g) = in≺(inv(g)) translates into a set of non-strict linear
inequalities on v, we conclude that the set C≺(I) is a polyhedral cone.
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Figure 10: The Gröbner fan in Example 4.3.2. The Gröbner region is R×R≥0.

4.3 Definition of the Gröbner fan

Now that we know that C≺(I) is a polyhedral cone we are ready to define the
Gröbner fan of an ideal.

Definition 4.3.1 Let I ⊆ k[x1, . . . , xn] be an ideal. We define the Gröbner
fan of I to be the set of cones of the form C≺(I) together with all their faces.
We denote it by Gfan(I). The support of Gfan(I) is called the Gröbner region
of I.

Example 4.3.2 Consider I = 〈y2 + 1 + xy, x2〉 ⊆ Q[x, y]. This ideal happens
to have three initial ideals of the form in≺(I): 〈y4, x〉, 〈y3, xy, x2〉, and 〈y2, x2〉.
For each of these ideals we find a term order and a Gröbner bases as in Corol-
lary 4.2.4. For each Gröbner bases we underline the initial terms with respect
to the ordering:

• {y3 + y − x, xy + 1 + y2, x2}

• {y2 + 1 + xy, x2}

• {y4 + 1 + 2y2, x− y − y3}

We apply Corollary 4.2.4. For the first Gröbner basis the condition in≺(inv(y
3+

y − x)) = y3 translates into 3v2 ≥ v2 (because y3 must be preferred over y)
and 3v2 ≥ v1 (because y3 is preferred over x). The Gröbner basis element
xy+1+ y2 gives inequalities v1+ v2 ≥ 0 and v1+ v2 ≥ 2v2. The third Gröbner
basis element x2 gives no condition. In total we have four inequalities, but two
are redundant. The cone is the middle cone of Figure 10. The same procedure
gives the other two full-dimensional Gröbner cones of the Gröbner fan. Taking
all faces we get all cones of the Gröbner fan. It consists of 3 + 4 + 1 = 8 cones.
We notice that the cones cover more than R2

≥0 and less than R2.

Our first observation is that since I has only finitely many initial ideals of
the form in≺(I), there are only a finite set of cones C≺(I). Each of these has
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only finitely many faces (Corollary 3.3.14). Hence Gfan(I) is a finite set of
cones. We still need to show that it actually is a fan.

4.4 Equivalence classes are relatively open cones

When we say “polyhedral cone” we have so far always meant closed polyhedral
cones, and unless stated otherwise we still mean that polyhedral cones are
closed. By an open polyhedral cone in Rn we mean a finite intersection of open
halfspaces passing through the origin. If C ⊆ Rn is a set with the property that
there exists a linear subspace L ⊆ Rn with C ⊆ L and C considered as a subset
of L (in the topology induced on L) then C is called a relatively open polyhedral
cone. Alternatively, if we do not wish to use topological notions, we can define
a relatively open polyhedral cone to be the intersection of an open polyhedral
cone and a linear subspace of Rn.

Example 4.4.1 The sets

• R3
>0 ⊆ R3

• R2
>0 × {(0)} ⊆ R3

• {(0, 0, 0)} ⊆ R3

are relatively open cones.

In this subsection we will prove that for fixed ideal I the equivalence relation
defined in Equation 1, page 40 gives rise to equivalence classes which are rel-
atively open cones - almost. Example 4.0.21 showed that equivalence classes
may be non-convex, so we need to be careful when stating our result.

In [13] proofs of some of the following statements are given, but there v ∈ Rn

is assumed to have non-negative entries. In the following we need to be more
careful. The vector v may have negative entries.

Lemma 4.4.2 [7, Lemma 2.12] Let I ⊆ k[x1, . . . , xn] be an ideal, and v ∈ Rn.
If f ∈ inv(I) then we may write f as a sum

∑

i inv(ci) with ci ∈ I and each
inv(ci) having different v-degree.

Proof. By definition of the initial ideal we may write f as
∑

i aiinv(pi) where
pi ∈ I and ai are polynomials. In fact we may assume that ai are single terms.
We rewrite f =

∑

i aiinv(pi) =
∑

i inv(aipi). So in fact, we may assume that
ai = 1. All terms of each summand inv(pi) have the same v-degree. Suppose
inv(pi) and inv(pj) have the same v-degree. Then either inv(pi)+ inv(pj) = 0 or
inv(pi) + inv(pj) = in(pi + pj). In the sum

∑

i inv(pi) we may therefore group
polynomials together, possibly removing summands, until the sum involves only
summands with different v-degrees. 2

Lemma 4.4.3 [7, Lemma 2.13] Let I ⊆ k[x1, . . . , xn] be an ideal and ≺ a term
ordering. If a vector v is in C≺(I) then in≺(inv(I)) = in≺(I).
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Proof. To prove “⊇” we look at a generator of in≺(f) where f ∈ G≺(I) and
observe that by Corollary 4.2.4 in≺(f) = in≺(inv(f)). This proves in≺(f) ∈
in≺(inv(I)).

To prove “⊆” we let f ∈ inv(I). By the Lemma above we may write
f =

∑

i inv(ci) with ci ∈ I and ci having different v-degree. There must exist j
such that in≺(f) = in≺(inv(cj)). We want to prove that this is in in≺(I). Using
the division algorithm with G≺(I) and ≺ we write

cj = m1g1 + · · ·+mrgr

with mi being terms and gi ∈ G≺(I). We now argue that the v-degree of cj is ≥
the v-degree of anymigi. The reason for this is that the v-degree of p in the algo-
rithm is non-strictly decreasing. Namely we cancel a term of p with the largest
term of (a multiple of) an fi ∈ G≺(I) in the algorithm, possibly introducing new
terms and canceling other. The terms that are introduced cannot have larger
v-degree than the term P we wish to cancel because in≺(inv(fi)) = in≺(fi) by
Corollary 4.2.4. The terms migi are produced by the algorithm when the ai
are modified. At this point the v-degree is bounded by the degree of p. We
conclude that for all terms of migi have smaller degree than cj . Hence

inv(cj) =
∑

i∈J

inv(migi)

for some index set J . In the “P := in≺(p)” variant of the division algorithm
in≺(p) gets ≺ smaller in each iteration. Therefore in≺(m1g1), . . . , in≺(mrgr) are
all different. By Corollary 4.2.4 they equal in≺(inv(m1g1)), . . . , in≺(inv(mrgr)).
The initial term in≺(inv(cj)) = in≺(

∑

i∈J inv(migi)) must equal in≺(inv(migi)) =
in≺(migi) for some i. This proves in≺(inv(cj)) is in in≺(I). 2

Corollary 4.4.4 [7, Corollary 2.14] Let I ⊆ k[x1, . . . , xn] be an ideal, ≺ a
term ordering and v ∈ C≺(I). Then G≺(inv(I)) = {inv(f) : f ∈ G≺(I)}.

Proof. To show that we have a Gröbner basis we must prove that in≺(inv(I)) =
〈in≺(inv(f)) : f ∈ G≺(I)〉. By the lemma in≺(inv(I)) = in≺(I). By Corol-
lary 4.2.4 {in≺(inv(f)) : f ∈ G≺(I)} = {in≺(f) : f ∈ G≺(I)}, which equals
in≺(I) since G≺(I) is a Gröbner basis. The set {in≺(inv(f)) : f ∈ G≺(I)} is a
minimal generating set since {in≺(f) : f ∈ G≺(I)} is. The set {inv(f) : f ∈
G≺(I)} is a reduced Gröbner basis because no non-initial terms of elements in
G≺(I) are in in≺(I) = in≺(inv(I)). 2

Algorithm 4.4.5
Input: An ideal I ⊆ k[x1, . . . , xn] and a vector v ∈ Rn

≥0 and a term order ≺.
Output: A reduced Gröbner basis for inv(I) with respect to ≺.

• Compute G≺v(I).

• Return {inv(f) : f ∈ G≺v(I)}.
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Proof. We first prove that v ∈ C≺v(I) using Corollary 4.2.4. For g in the
Gröbner basis of the corollary we have to check that in≺v(g) = in≺v(inv(g)),
but this holds for any polynomial g. The correctness now follows from Corol-
lary 4.4.4. 2

Example 4.4.6 Let I = 〈x+ y + z2, y2 − z3〉 ⊆ Q[x, y, z] and v = (0, 1, 1). To
compute inv(I) we first compute

G≺v(I) = {z2 + y + x,

yz + y2 + xz,

y3 + y2 + 2xy − xy2 + x2 − x2z}
where ≺ is some term ordering. We now take initial forms:

G≺(inv(I)) = {z2, yz + y2, y3}.

Lemma 4.4.7 If in≺(I) = in≺′(I) then G≺(I) = G≺′(I).

Proof. Exercise! Hint: the proof of Proposition 1.6.14. 2

Proposition 4.4.8 Let I ⊆ k[x1, . . . , xn] be an ideal. There exists only finitely
many initial ideals of the form inv(I) where v ∈ Rn

≥0.

Proof. By Proposition 4.1.1 there are only finitely many initial ideals of the
form in(I)≺. It follows from Lemma 4.4.7 above that there are only a finite
number of reduced Gröbner bases of I. By Corollary 4.4.4 a generating set for
any initial ideal is gotten by taking initial forms of one of these Gröbner bases.
There are only a finite number of choices for what terms a vector v will pick.
2

Proposition 4.4.9 [7, Proposition 2.6] Let I ⊆ k[x1, . . . , xn] be an ideal and
≺ a term order and v ∈ C≺(I). For u ∈ Rn we have:

inu(I) = inv(I) ⇔ ∀g ∈ G≺(I) : inu(g) = inv(g).

Proof. ⇐: Since v ∈ C≺(I), Corollary 4.2.4 shows that in≺(g) = in≺(inv(g)) =
in≺(inu(g)). Applying the corollary again we get u ∈ C≺(I). By Corollary 4.4.4
G≺(inv(I)) = {inv(f) : f ∈ G≺(I)} = {inu(f) : f ∈ G≺(I)} = G≺(inu(I)). Since
the Gröbner bases are the same, inv(I) = inu(I).

⇒: Let g ∈ G≺(I). By Corollary 4.2.4 we have in≺(inv(g)) = in≺(g). By
Lemma 4.4.3, since v ∈ C≺(I), in≺(inu(g)) ∈ in≺(inu(I)) = in≺(inv(I)) =
in≺(I). Since g comes from a reduced basis only one term is in in≺(I). Hence
in≺(inu(g)) = in≺(g) = in≺(inv(g)). Now we cancel out the term by subtract-
ing. Suppose inu(g) − inv(g) ∈ inu(I) = inv(I) is non-zero. Then in≺(inu(g) −
inv(g)) ∈ in≺(inv(I)) = in≺(I), contradicting that g contains only one term
from in≺(I).2

Example 4.4.10 Write up inequality system for having
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Lemma 4.4.11 Given a polynomial g ∈ k[x1, . . . , xn] and a vector v ∈ Rn.
The set of vectors u such that inu(g) = inv(g) is a relatively open polyhedral
cone.

Proof. It is straight forward to see that inu(g) = inv(g) translates into equations
(arising from having all terms in inv(g) having the same u-degree) and strict
inequalities (arising from having all other terms of g u-degree less than the
u-degree of inv(g)). Hence the set is a relatively open polyhedral cone. 2

We conclude, using the proposition, that every equivalence class described
by the proposition is a finite intersections relatively open polyhedral cones and
therefore a relatively open polyhedral cone.

4.5 The relative interior of a cone is an equivalence class

This subsection and the rest of Chapter 4 have not been covered in
the lectures in 2014. However, Proposition 4.5.2 and Theorem 4.6.2
were presented without proof.
By the affine span of a set we mean the smallest affine subspace containing it.

Definition 4.5.1 Let P ⊆ Rn be a d-dimensional polyhedron and L : affinespan(P ) →
Rd a bijective affine transformation. The relative interior of P is L−1(int(L(P ))),
where int(L(P )) denotes the interior of L(P ).

Proposition 4.5.2 Every polyhedron in P ⊆ Rn is the the disjoint union of
the relative interiors of its faces.

Proof. SKETCH 2

We state the following Lemma without proof.

Lemma 4.5.3 Define the polyhedron P := {x ∈ Rn : Ax = 0 ∧ Bx ≤ 0} for
some A ∈ Rd×n and B ∈ Rd′×n. The relative interior of P is {x ∈ Rn : A′x =
0∧B′x < 0} where A′ consists of all rows of A together with the rows of B with
the property that P ⊆ HBi·

and where B′ consists of the remaining rows of B.

NOT true that we always make all inequalities strict.

Example 4.5.4

Proposition 4.5.5 [7, Lemma 2.16] The relative interior of a cone in the
Gröbner fan of I is an equivalence class of the equivalence relation defined
in Equation (1).

Proof. By definition every cone in the Gröbner fan is a face C of C≺(I) for
some term order ≺.

Consider Corollary 4.2.4 again:

v ∈ C≺(I) ⇔ ∀g ∈ G≺(I) : in≺(inv(g)) = in≺(g).
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The condition in≺(inv(g)) = in≺(g) is equivalent to saying that the v-degree of
every term of g is less than or equal to the v-degree of in≺(g). That is, C≺(I)
is given by non-strict linear inequalities - one for each term in the tail of every
g ∈ G≺(I).

A face C of C≺(I) is therefore described by the same system of inequalities,
but where some of the inequalities are turned into equations (Lemma 3.4.14).
To get the relative interior of C we make some of the inequalities strict and the
other inequalities into equations (Lemma 4.5.3). We get a system of equations
and inequalities:

u ∈ rel intC ⇔ Au = 0 ∧A′u < 0

for some matrices A and A′. Whether u is in the relative interior of C is
determined by the sign pattern of Au and A′u. There is one sign for each term
in the tail of a polynomial in G≺(I). Now, suppose that u is in the relative
interior of C and u′ is such that the (Au,A′u) and (Au′, A′u′) have the same
sign pattern. Then u ∈ C≺(I) and therefore in≺(g) is a term of inu(g). The
sign pattern of Au and A′u now tells which other terms appear in inu(g). The
vector u′ gives the same pattern and therefore inu′(g) = inu(g). This proves by
Proposition 4.4.9 that inu′(I) = inu(I). Therefore the relative interior of C is
contained in the equivalence class of u.

On the other hand, suppose that u′ was a vector such that inu′(I) = inu(I).
By Proposition 4.4.9 inu′(g) = inu(g). This proves that the sign pattern of
(Au,A′u) and (Au′, A′u′) are the same. Therefore, u′ is also in the relative
interior of C. 2

4.6 The intersection of two Gröbner cones is a face of both

To prove that the Gröbner fan defined in Definition 4.3.1 is a fan, the only thing
that remains to be shown is that cones intersect nicely (Theorem 4.6.1 below).

Theorem 4.6.1 [7, Proposition 2.18] Let C1 and C2 be cones in the Gröbner
fan of I then C1 ∩ C2 is a face of C1 (and C2).

Proof. The intersection C1∩C2 is a polyhedral cone. By Proposition 4.5.5, if u
is in C1 all of the equivalences class of u is in C1. Similarly, for C2. Therefore
the equivalence class of u ∈ C1 ∩C2 is in C1 ∩C2. We conclude that C1 ∩C2 is
a union of equivalence classes.

Let E be one such class and let u ∈ E. By Proposition 4.5.2 u is in the
relative interior of a unique face of C1 which is a cone in the Gröbner fan
by definition. The set of relative interior points of this face is exactly the
equivalence class E of u and E is the face. Hence C1 ∩C2 is a union of relative
interiors of faces of C1. Our goal is to show that C1 ∩ C2 is the closure of a
single such equivalence class.

A face F of C1 is the intersection spanR(F )∩C1. Hence the span of a face is
different for every face of C1. Consider those spans where F is the closure of an
equivalence class E ⊆ C1∩C2. We claim that there is a unique span of maximal
dimension. Suppose there were two equivalence classes E1 and E2 ⊆ C1 ∩ C2

with maximal dimensional span of dimensionD, then conv(E1∪E2) is contained
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in C1 ∩C2, but with dimension higher than D since the spans of E1 and E2 are
different. However, this is a contradiction since then C1∩C2 cannot be covered
by finitely many relatively open cones of dimension at most D.

Let E be the equivalence class in C1∩C2 of highest dimension D. We claim
that E = C1 ∩ C2. Since C1 ∩ C2 is closed we get E ⊆ C1 ∩ C2. If there was
ω ∈ C1 ∩ C2 \ E then conv(ω ∪ E) would have dimension D and be contained
in C1 ∩ C2. This is a contradiction, since conv(ω ∪ E) cannot be covered by
finitely many equivalence classes of lower dimension. 2

After a lot of hard work we have proved:

Theorem 4.6.2 The Gröbner fan of an ideal I ⊆ k[x1, . . . , xn] is a polyhedral
fan.
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5 Homogeneous ideals

A natural question to ask is whether the Gröbner fan of an ideal is the normal
fan of a polyhedron. In the case of certain homogeneous ideals this is indeed
the case. We do not prove that this is the case in these notes.

5.1 Semigroups and monoids

A semigroup (G,+) is a set of elements G together with an operation + which
satisfies the associate law:

∀a, b, c ∈ G : (a+ b) + c = a+ (b+ c).

An abelian semigroup is one where + is also commutative (a + b = b + a). If
(G,+) has a neutral element 0 ∈ G with respect to + (meaning a+0 = a = 0+a)
then (G,+) is called a monoid. Monoids and semigroups are almost groups,
but they miss inverse elements.

Example 5.1.1 N := {0, 1, 2, 3, . . . } is an abelian semigroup with the opera-
tion +. It is also an abelian monoid. The same holds for Nn.

Definition 5.1.2 Let A and B be two monoids and φ : A → B be a function.
If φ(0) = 0 and φ(x+y) = φ(x)+φ(y) then we call φ a monoid homomorphism.

5.2 The semigroup ring

Definition 5.2.1 For a commutative ring R and an abelian monoid S the
semigroup ring R[S] is the set of all functions f : S → R with f(x) 6= 0 for only
finitely many x ∈ S. The addition of f, g ∈ R[S] is given by addition in k:

(f + g)(x) := f(x) + g(x)

and multiplication is done by “convolution”:

(f · g)(z) :=
∑

(x,y)∈S×S:z=x+y

f(x) · f(y). (2)

The zero function S → {0} is the neutral element for addition. The neutral
element for multiplication is the function which takes 0 ∈ S to 1 ∈ R and all
other elements to 0 ∈ R.

We notice that there is only a finite number of f(x) ·g(y) which can be non-zero
in Equation 2 and therefore (f · g)(z) is non-zero for only finitely many z.

Lemma 5.2.2 The semigroup ring is a commutative ring.

Proof. Left to the reader. 2

Example 5.2.3 Let R = k and S = Nn. Then the semigroup ring R[S] =
k[Nn] is isomorphic to our polynomial ring k[x1, . . . , xn]. Namely an f ∈ R[S]
is mapped to the polynomial g =

∑

u∈Nn:f(u) 6=0 f(u)x
u.

In this course we will always let R = k, where k is our field.
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5.3 Gradings and homogeneity

In the following we will define gradings on k[x1, . . . , xn]. These definitions can
easily be generalized to any semigroup ring R[S], but we stick to the polynomial
ring to keep things simple.

Definition 5.3.1 By a grading on k[x1, . . . , xn] we mean a monoid homomor-
phism φ : Nn → S to a semigroup S. For u ∈ Nn the φ-degree of xu and u is
φ(u).

Definition 5.3.2 Let φ be a grading on k[x1, . . . , xn]. A polynomial f ∈
k[x1, . . . , xn] is φ-homogeneous if every exponent of f has the same φ-degree.
An ideal I ⊆ k[x1, . . . , xn] is φ-homogeneous if it has a generating set of φ-
homogeneous polynomials.

Example 5.3.3 The standard grading on k[x1, . . . , xn] is defined as φ : Nn → N

with φ(u) =
∑n

i=1 ui for u ∈ Nn. We sometimes call φ(u) the total degree of
xu. A polynomial is homogeneous in the standard grading if every term has the
same usual total degree.

• x31 − x22x3 + x33 is homogeneous in the standard grading.

• x21 − x12 is not homogeneous in the standard grading.

• 〈x1 − x2, x
3
1 − x22x3 + x33 + x1 − x2〉 = 〈x1 − x2, x

3
1 − x32x3 + x33〉 is a

homogeneous ideal in the standard grading.

Example 5.3.4 Let ω ∈ Rn. We may define the grading φω : Nn → R by
φω(u) := ω · u. For a polynomial f ∈ k[x1, . . . , xn] the initial form inω(f) is
φω-homogeneous by Definition 1.4.1. For simplicity we sometimes just say ω-
homogeneous. If I ⊆ k[x1, . . . , xn] is an ideal then the initial ideal inω(I) is
ω-homogeneous by Definition 1.6.1.

Example 5.3.5 A matrix A ∈ Nd×n defines a grading φA : Nn → Nd by
φA(u) := Au. Notice that if ω is a a vector in the rowspace of A then any
φ-homogeneous polynomial is also ω-homogeneous.

A priori, it is not clear that the last ideal in Example 5.3.3 is homogeneous.
In the following we will find an algorithm for deciding if an ideal is homogeneous.

Lemma 5.3.6 Let φ be a grading on k[x1, . . . , xn]. Let f, g ∈ k[x1, . . . , xn]
be φ-homogeneous and h ∈ k[x1, . . . , xn] a single term. The polynomial hf is
φ-homogeneous. If the terms of f and g have the same φ-degree, then f + g is
φ-homogeneous.

Proof. Let h = cxu and let c′xu
′

and c′′xu
′′

be two terms of f resulting in two
terms cc′xu+u′

and cc′′xu+u′′

. We check that they have the same φ-degree:

φ(u+ u′) = φ(u) + φ(u′) = φ(u) + φ(u′′) = φ(u+ u′′).

Hence hf is φ-homogeneous. It is clear from the definition that f + g is homo-
geneous since all terms have the same φ-degree. 2
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Lemma 5.3.7 Let f, g ∈ k[x1, . . . , xn] \ {0} be φ-homogeneous and ≺ a term
ordering. Then the S-polynomial S≺(f, g) is φ-homogeneous.

Proof. The S-polynomial was defined as

S≺(f, g) =
lcm(in≺(f), in≺(g))

in≺(f)
f − lcm(in≺(f), in≺(g))

in≺(g)
g

to carefully make two terms cancel - one from each summand. Each summand
is φ-homogeneous by Lemma 5.3.6. Since two terms cancel they must have the
same φ-degree. Therefore all terms of the S-polynomial have the same φ-degree.
2

Lemma 5.3.8 Let f and f1, . . . , fs be φ-homogeneous polynomials. The re-
mainder r produced by the division algorithm (Algorithm 1.5.1) is φ-homogeneous.

Proof. In the division algorithm f is assigned to p and p is adjusted until it
eventually becomes zero and the algorithm terminates. At the beginning p is
φ-homogeneous because f is. In each iteration the p remains φ-homogeneous
because we only subtract φ-homogeneous polynomials from p of the same φ-
degree. Therefore p remains φ-homogeneous of the same degree until it becomes
0. Terms are moved from p to the remainder r. Therefore the r = 0 when the
algorithm terminates. 2

Proposition 5.3.9 Let φ be a grading on k[x1, . . . , xn]. Let I ⊆ k[x1, . . . , xn]
be a φ-homogeneous ideal and ≺ a term ordering. Then the reduced Gröbner
basis G≺(I) is φ-homogeneous.

Proof. By Hilbert’s Basis Theorem 1.1.6 there exists a finite generating set
G ⊆ k[x1, . . . , xn] for I. We also know that there exists a generating set G′ ⊆
k[x1, . . . , xn] of φ-homogeneous polynomials since I is φ-homogeneous, which
could be infinite. We now take every g ∈ G and express it in terms of elements
of G′:

g =

m
∑

i=1

figi

for some m ∈ N, fi ∈ k[x1, . . . , xn] and gi ∈ G′. Doing so for all finitely many
terms in g requires only a finite number of terms of the type g′i. We let G′′

denote this finite set of φ-homogeneous polynomials which generate I.
If we perform Buchberger’s Algorithm on G′′, the result is φ-homogeneous

because the operations of taking S-polynomials and remainder preserves ho-
mogeneity (Lemma 5.3.7 and Lemma 5.3.8. The minimizing and autoreducing
algorithms (Algorithm 1.7.8 and Algorithm 1.7.9) also preserve φ-homogeneity
and together produce the unique reduced Gröbner basis of I with respect to ≺.
We conclude that this Gröbner basis is φ-homogeneous. 2

Knowing that the reduced Gröbner basis is always homogeneous can be used
to compute a homogeneous generating set for a homogeneous ideal but also to
check if and ideal is homogeneous.
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Algorithm 5.3.10
Input: A set G ⊆ k[x1, . . . , xn] and a grading φ.
Output: “Yes” if the ideal 〈G〉 is φ-homogeneous and “No” otherwise.

• Compute the reduced Gröbner basis H := G≺(〈G〉).

• Return “Yes” if all polynomials in H are φ-homogeneous and “No” oth-
erwise.

Example 5.3.11 The ideal 〈x2 + y − 3zx, y2z + zx − 1〉 ⊆ Q[x, y, z] is not
homogeneous in the standard grading because its reduced Gröbner basis with
respect to the lexicographic ordering (with z ≺ y ≺ x) is not homogeneous:

{y4z2 + 1− 3z2 + yz2 − 2y2z + 3y2z3, x− 3z + yz − y2 + 3y2z2 + y4z}.

Definition 5.3.12 By a φ-homogeneous part of a polynomial f we mean the
sum of all terms in f of a particular φ-degree.

Lemma 5.3.13 Let φ be a grading on R := k[x1, . . . , xn]. Let I ⊆ R be a
φ-homogeneous ideal. A polynomial f ∈ I if and only if every φ-homogeneous
part of f is in I.

Proof. Clearly, if every φ-homogeneous part of f is in I then so is the sum,
which equals f . On the other hand, let f ∈ I be a polynomial, let h be a
φ-homogeneous part of f , and let G≺(I) be the reduced Gröbner basis of I
with respect to some term ordering ≺. The division algorithm will produce
an expression f =

∑

i aifi with a1 being polynomials and fi ∈ G≺(I). By
splitting each ai into terms and multiplying out we get an expression f =
∑

j bjgj where bj is a single term and gj ∈ G≺(I). Since each bj is homogeneous,
any homogeneous part of f is written as f =

∑

j∈J bjgj for J chosen to give
just the terms in the right φ-degree. Since gj ∈ I we conclude that the φ-
homogeneous part is in I. 2

Proposition 5.3.14 Let R := k[x1, . . . , xn] and φ : Nn → S a grading. As a
k-vector space we may write R as a direct sum:

R =
⊕

m∈S

Rm

where Rm is the k-vector space of homogeneous polynomials of φ-degree m (to-
gether with 0). Furthermore, if I is a φ-homogeneous ideal then we can define
Im to be the set of φ-homogeneous polynomials in I of degree m (together with
0). As a vector space we have

I =
⊕

m∈S

Im.

Proof. Clearly, a polynomial can be uniquely be split into finitely many non-
zero homogeneous parts of different φ-degree, which proves R =

⊕

m∈S Rm. A
polynomial f ∈ I is also in R and therefore splits into φ-homogeneous parts.
Each of these is in I by Corollary 5.3.13 and therefore in an Im. 2
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5.4 Hilbert functions

For an ideal I homogeneous with respect to a grading φ : Nn → S we would
like to define the function:

HI
φ(m) := dimk(Rm/Im)

with Rm and Im defined as in Proposition 5.3.14. One problem is that this
dimension might not be finite dimensional. We will therefore restrict to the
case where I is A-homogeneous (Example 5.3.5) with A ∈ Rd×n with a positive
vector in its rowspace.

Lemma 5.4.1 Let I ⊆ k[x1, . . . , xn] be an A-homogeneous ideal with A ∈
Rd×n. Suppose that A has a positive vector in its rowspace. Then Rm is a
finite dimensional k-vector space.

Proof. Let ω = ytA be a positive vector in the rowspace, with y ∈ Rd, and let
b ∈ R be the degree. There is only a finite number of monomials with ω-degree
b. Namely, if the ith entry an exponent vector v is bigger than b

ωi
then the

ω-degree of xv must be bigger than b.
Now, let b := ytm. If a monomial xv has A-degree m, then Av = m,

implying yAv = ytm and therefore xv has ω-degree ytm. Since there are only
finitely many xu of that ω-degree, there are only finitely many xu of A-degree
m. We conclude that Rm is a finite dimensional vector space. 2

Definition 5.4.2 Let I ⊆ k[x1, . . . , xn] be an A-homogeneous ideal with A ∈
Rd×n. Suppose that A has a positive vector in its rowspace. We define the
A-graded Hilbert function HI

A : Rd → N of I as follows:

HI
A(m) := dimk(Rm/Im).

The function is well defined sinceRm is finite dimensional and Im is a k-subspace
of Rm.

In Lemma 1.6.10 we saw that the cosets of standard monomials form a k-
vector space basis of R/I. From the direct sum of Proposition 5.3.14 we get
that the cosets of the standard monomials of A-degree m form a k-vector space
basis of Rm/Im.

Lemma 5.4.3 Let I and A be as in Definition 5.4.2. Let ≺ be a term ordering.
Then

HI
A(m) = H

in≺(I)
A (m).

Proof. To find HI
A(m) we count the monomials in std≺(I) of degree m. To find

H
in≺(I)
A (m) we count the monomials in std≺(in≺(I)) of degree m. But these are

the same since in≺(I) = in≺(in≺(I)). (The initial ideal of a monomial ideal is
the ideal itself). 2
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5.5 Homogeneity implies completeness

Proposition 5.5.1 Let u, v ∈ Rn and let I be u-homogeneous polynomial ideal.
Then for any λ ∈ R we have

inv(I) = inv+λu(I).

Proof. We only need to show the inclusion ⊆ since the other would then follow
by making suitable choices of u, v and λ. Let f ∈ I and decompose it into
its u-homogeneous parts: f =

∑

i fi. By Lemma 5.3.13 fi ∈ I since I is
u-homogeneous. Since there is no cancellation we get inv(f) =

∑

i∈J inv(fi)
for a suitable subset of indices J . For every i, fi is u-homogeneous, implying
inv(fi) = inv+λu(fi) ∈ inv+λu(I). Therefore inv(f) =

∑

i∈J inv(fi) ∈ inv+λu(I)
and we have proved the inclusion ⊆ since the left hand side is generated by
initial forms of the form inv(f) with f ∈ I. 2

Corollary 5.5.2 Let ω ∈ Rn and I ⊆ k[x1, . . . , xn] be a ω-homogeneous ideal.
The Gröbner cones of the form Cu(I) and C≺(I) are invariant under translation
by ω.

Proof. A set S is translation invariant under translation by ω iff S = {x+ω : x ∈
S}. By Proposition 5.5.1 the equivalence classes of the relation in Equation 1
are translation invariant. Therefore the closures, Cu(I), are also translation
invariant. By Proposition 4.2.3, every cone of the form C≺(I) is of the form
Cu(I) for some u ∈ Rn. 2

Proposition 5.5.3 Let ω ∈ Rn
>0 and I ⊆ k[x1, . . . , xn] be an ω-homogeneous

ideal. Then Gfan(I) is complete.

Proof. Let u be any vector in Rn. Choosing λ ∈ R sufficiently large, the vector
u + λω becomes positive. Let ≺ be a term ordering. By Corollary 4.2.4, the
vector u + λω is in the Gröbner cone C≺u+λω

(I). By the same corollary this
Gröbner cone is translation invariant under ω (because the g mentioned in the
corollary is ω-homogeneous by Proposition 5.3.9). Therefore, u ∈ C≺u+λω

(I).
We conclude that every vector u ∈ Rn is in some Gröbner cone of the Gröbner
fan of I and that the fan therefore must be complete. 2

Remark 5.5.4 Ideals that are homogeneous in gradings induced by positive
vectors are nice for several reasons:

• Their Gröbner fans are complete.

• Their Gröbner fans are normal fans of polytopes. (We will not prove
this.)

• We may compute Gröbner bases with respect to orderings that do not
satisfy the 1-is-smallest-property. Consider the “reverse lexicographic”
ordering ≺rlex, where for a, b ∈ Nn we let xa ≺rlex xb ⇔ ∃j : aj >
bj∧aj+1 = bj+1∧· · ·∧an = bn which is not a term ordering. Suppose that
we have an ω-homogeneous ideal I where ω ∈ Rn

>0 and an ω-homogeneous
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generating set G for I. Then ≺rlexω
agree picks out the same initial terms

as ≺rlex from polynomials in G. When running Buchberger’s algorithm
on G all polynomials that appear will be ω-homogeneous (proof of Propo-
sition 5.3.9) and therefore ≺rlexω

and ≺rlex pick the same initial terms.

• They define varieties in “projective space”. See the explanation in the
next section.

5.6 Homogenisation

Since homogeneous ideals have some nice properties, we my want make non-
homogeneous ideals homogeneous by introducing a new variable. This idea is
also used when moving a variety to projective space. We give a simple example
for the reader who is unfamiliar with the notion of projective space:

Example 5.6.1 Every line in R2 is of the form V (〈f〉) where f = ax+by+c ∈
R[x, y] and with a and b are in R, not both 0. Usually two lines will have a
unique intersection point. But parallel lines will not. We fix this “problem”
by introducing a homogenising variable t. Instead of V (〈f〉) we consider the
variety of the homogeneous ideal V (〈fh〉) ∈ R3 where fh := ax + by + ct. We
want to identify points (x, y, t) with (x′, y′, t′) if there exists s 6= 0 such that
s(x, y, t) = (x′, y′, t′). In this case we write (x, y, t) ∼ (x′, y′, t′). We check that
(x, y, t) satisfies the equation if and only if s(x, y, t) does:

fh(sx, sy, st) = asx+ bsy + zst = s(ax+ by + cz) = sfh(x, y, z).

The projective plane is now defined as P2 := (R3 \ (0, 0, 0))/ ∼. Whether fh is 0
in a point or not only depends on the equivalence class. We therefore define the
projective variety defined by fh to be the set of equivalence classes where f is 0.
We get the original picture of R2 back by intersecting R3 with H := R2 × {1}.
The equivalence classes of points with last coordinate 0 do not intersect H.
These are called points at infinity. In the projective space P2 any two different
lines have exactly one common point.

We have earlier used the notion of Laurent monomials. By the Laurent
polynomial ring we mean the semigroup ring k[Zn]. That is, polynomials where
exponents may be negative.

Definition 5.6.2 Let f ∈ k[x1, . . . , xn] be a polynomial. We define the ho-
mogenisation of f to be fh := xd0f(

x1
x0
, . . . , xn

x0
) where d is the maximal total

degree of an term in f . If f = 0 we define fh = 0. Let I ⊆ k[x1, . . . , xn] be an
ideal. The homogenisation of I is

Ih := 〈fh : f ∈ I〉 ⊆ k[x0, . . . , xn].

It is clear that (p1, . . . , pn) ∈ kn is in V (I) if and only if (1, p1, . . . , pn) is
in V (Ih). But as we have seen in Example 5.6.1, there may also be points in
“at infinity” with the additional coordinate being 0. In the definition of Ih it
is important to consider all elements in I.
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Example 5.6.3 Let I = 〈x+y+1, x+y〉 ⊆ Q[x, y]. Each of the two generators
defines a line in the plane R2. These two lines are parallel and do not intersect.
We notice that 1 ∈ I and therefore 1h = 1 ∈ Ih. If we just homogenise the
generators of I we get 〈x + y + t, x + y〉, but this ideal does not contain 1.
(To see this compute a Gröbner basis or observe that all terms in this ideal
must have degree at least 1.) Hence we cannot get Ih just by homogenizing the
generators.

The following theorem gives an algorithm for computing the homogeniza-
tion.

Proposition 5.6.4 [4, Theorem 4, page 397] Let I ⊆ k[x1, . . . , xn] be an ideal.
Let ω = (1, . . . , 1) ∈ Nn and let ≺ be a term ordering. Then {gh : g ∈ G≺ω(I)}
generates Ih.

Proof. To prove 〈gh : g ∈ G≺ω(I)〉 = Ih we first observe that the inclusion ⊆
is clear. Now, consider a generator fh of Ih where f ∈ I. Using the division
algorithm on f modulo G≺ω(I) we can write f =

∑

i aigi where ai is a term,
gi ∈ G≺ω(I) and the total degree of each aigi is less than or equal to the total
degree of f . Because of this we get fh =

∑

i aix
di
0 ghi where di = deg(f)−deg(gi).

This shows that fh is in the left hand side. 2

Example 5.6.5 Example 5.6.3 continued. Applying the proposition, the re-
duced Gröbner basis of G≺ω(I) becomes {1}. We now homogenise and get {1}
as a generating set for Ih.

Proposition 5.6.6 [9, Proposition 5.2.3] Let I ⊆ k[x1, . . . , xn] be an ideal, ω ∈
Rn a vector and ≺ a term ordering on k[x1, . . . , xn]. Let ≺′ be the termordering
on k[x0, . . . , xn] defined by xu ≺′ xu

′

if and only if

∑

i

ui <
∑

i

vi ∨ (
∑

i

ui =
∑

i

vi ∧ xu|x0=1 ≺ xv|x0=1).

The set G := {inω(g|x0=1) : g ∈ G≺′

(0,ω)
(Ih)} is a Gröbner basis for inω(I) with

respect to ≺.

Notice that ≺′
(0,ω) might not be a term ordering. But, as explained in Re-

mark 5.5.4, this is not a problem since Ih is homogeneous in the total grading,
and we can talk about G≺′

(0,ω)
(Ih) by considering a term order which agrees

with ≺′
(0,ω) on monomials of the same total degree.

Proof. It is straight forward to prove the containment G ⊆ inω(I). It remains
to be proved that in≺(inω(I)) ⊆ 〈in≺(g) : g ∈ G〉. The left hand side is gene-
rated by elements of the form m = in≺(

∑

i inω(fi)) where fi ∈ I. We will show
that any such m is on the right hand side. Without loss of generality we may
assume that the fi’s have the same ω-degree as m. Hence m = in≺(inω

∑

i fi).
Let f =

∑

i fi ∈ I. Then fh ∈ Ih and the initial term in≺′
(0,ω)

fh must be
divisible by the initial term in≺′

(0,ω)
(g) of some Gröbner basis element g ∈
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G≺′

(0,ω)
(Ih). Consequently, (in≺′

(0,ω)
(g))|x0=1 divides (in≺′

(0,ω)
fh)|x0=1. Observe

that (in≺′

(0,ω)
(g))|x0=1 = in≺ω(g|x0=1) = in≺(inω(g|x0=1)) since g is homoge-

neous. Similarly, (in≺′

(0,ω)
(fh))|x0=1 = in≺ω(f

h
|x0=1) = in≺(inω(f)). This proves

that in≺(inω(g|x0=1)) divides m = in≺(inω(f)) as desired. 2

We strengthen Proposition 4.4.8:

Corollary 5.6.7 Every ideal I ⊆ k[x1, . . . , xn] has only finitely many initial
ideals of the form inω(I) where ω ∈ Rn.

Proof. By Proposition 4.1.1 the ideal Ih has only a finite number of initial ideals
of form in≺(I

h). Lemma 4.4.7 shows that there can be at most one reduced
Gröbner basis for each such in≺(I

h). Hence Ih has only finitely many reduced
Gröbner bases. By Proposition 5.6.6 generators for initial ideals of I can be
obtained by taking initial forms of elements of these reduced Gröbner bases
after dehomogenisation. For each reduced Gröbner basis there is only a finite
number of such ways that ω can pick generators for the initial ideal inω(I).
Hence there are only finitely many initial ideals of I. 2

5.7 Links in Gröbner fans

Recall that NP (F ) means the (outer) normal cone of a polyhedron P at the
face F . In the following definition we implicitly use Proposition 4.5.2.

Definition 5.7.1 Let P ⊆ Rn be a polyhedron and ω ∈ P . We define the
tangent cone at ω to be dual cone linkω(P ) := NP (F )∨ where F is the face of
P containing ω in its relative interior. Since this does not depend on ω but
only on P .

Why we chose the weird notation linkω(P ) should become clear soon.

Example 5.7.2 Let P = conv((0, 0), (0, 1), (1, 0), (1, 1)) ⊆ R2. The tangent
cone at (1, 1) is the negative orthant R2

≤0.

Lemma 5.7.3 Let P ⊆ Rn be a polyhedron and ω ∈ P . Then u ∈ linkω(P ) if
and only if ω + εu ∈ P for all ε > 0 sufficiently small. Furthermore, for ε > 0
sufficiently small

linku(linkv(P )) = linkv+εu(P ).

Proof. Left to the reader. 2

Example 5.7.4 Let P = conv((0, 0), (0, 1), (1, 0), (1, 1)) ⊆ R2. Then

link( 9
10

,1)(P ) = R× R≤0

and
link(−1,0)(link(1,1)(P )) = link(−1,0)(R

2
≤0) = R× R≤0.

This is also what the lemma states for v = (1, 1), u = (−1, 0) and ε = 1
10 .
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Lexicographic Lexicographic

Lexicographic

ab

c

Figure 11: The intersection of the Gröbner fan of the ideal of Example 4.0.22
with the triangle conv{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The intersection of the link
at the point (3, 4, 2).

Definition 5.7.5 Let F be a polyhedral complex and ω ∈ supp(F). We define
the link of F at ω:

linkω(F ) = {linkω(P ) : ω ∈ P ∈ F}.

Again, the link does not depend on ω but only the face containing ω in its
relative interior.

Lemma 5.7.6 The link of a polyhedral complex at a point is a polyhedral fan.

We will not prove this lemma, but rather see that it is always true for Gröbner
fans.

Example 5.7.7 The link of a fan in a point is shown in Figure 9.

Proposition 5.7.8 [13, Proposition 1.13] Let I ⊆ k[x1, . . . , xn] be an ideal
and u, v ∈ Rn. Suppose that I is homogeneous or u ∈ Rn

>0. Then for ε > 0
sufficiently small

inu+εv(I) = inv(inu(I)).

Proof. Let ≺ be a term ordering. We claim that u+εv ∈ C(≺v)u(I). Notice that
(≺v)u might not be a term ordering, but by our discussion in Remark 5.5.4 this is
not a problem because (≺v)u agrees with some term ordering on a homogeneous
generating set for I. We will use Corollary 4.2.4 to show u + εv ∈ C(≺v)u(I).
Let g ∈ G(≺v)u

(I). It suffices to prove that in(≺v)u
(g) = in(≺v)u

(inu+εv(g)). But
this follows from in(≺v)u

(inu+εv(g)) = in(≺v)u
(inv(inu(g))) for ε > 0 sufficiently

small and in(≺v)u
(inv(inu(g))) = in≺v(inv(inu(g))) = in≺v(inu(g)) = in(≺v)u

(g).
We apply Corollary 4.4.4 which says

inu+εv(I) = 〈inu+εv(f) : f ∈ G(≺v)u
(I)〉 = 〈inv(inu(f)) : f ∈ G(≺v)u

(I)〉
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= 〈inv(g) : g ∈ G≺v(inu(I))〉 = inv(inu(I)).

Here the second equality is true when ε is sufficiently small and the third is
obtained by applying Corollary 4.4.4 a second time using u ∈ C(≺v)u(I). The
last equality again follows from Corollary 4.4.4 using v ∈ C≺v(inu(I)). 2

Example 5.7.9 The following is a reduced Gröbner basis for the initial ideal
in(3,4,2)(I) of I of Example 4.0.22

{c7, bc5, b2, ac6, abc3 −
1850

19281
ac

5
, a

2
c
4
, a

2
bc

2
, a

3
c
2 −

980

19281
ac

5
, a

3
b−

916

19281
ac

5
, a

4
c, a

5}

This was computed with Algorithm 4.4.5. The Gröbner fan of this ideal equals
the link at the point (3, 4, 2) of the Gröbner fan of I. It is shown in Figure 11.

Corollary 5.7.10 Let I ⊆ k[x1, . . . , xn] be an ideal and let u ∈ Rn
>0. Then

linku(Gfan(I)) = Gfan(inu(I)).

5.8 “Very homogeneous” ideals

Clearly, the initial ideal inω(I) is ω-homogeneous, but if ω comes from a cone
in the Gröbner fan which is not just a ray, the ideal would me homogeneous
with respect to many more vectors.

Definition 5.8.1 Let I ⊆ k[x1, . . . , xn] be an ideal. We call the set {ω ∈ Rn :
inω(I) = I} the homogeneity space of I.

Lemma 5.8.2 The homogeneity space of an ideal I ⊆ k[x1, . . . , xn] is a linear
subspace of Rn.

Proof. We wish to apply Proposition 4.4.9. We choose v = 0 ∈ Rn and ≺
to be the lexicographic term ordering. Now the proposition tells us that u ∈
Rn is in the homogeneity space of I if and only if ∀g ∈ G≺(I) : inu(g) = g.
This is equivalent to saying that all terms of g have the same u-degree. This
translates into a set of linear condition of u that must be satisfied. Therefore
the homogeneity space is a subspace of Rn. 2

Since the homogeneity space is a linear subspace, it equals its closure. There-
fore C0(I) = {ω ∈ Rn : inω(I) = in0(I)} = {ω ∈ Rn : inω(I) = I} = {ω ∈ Rn :
inω(I) = I}, which is exactly the homogeneity space. Therefore C0(I) is our
notation for the homogeneity space of I.

Example 5.8.3 We wish to compute the homogeneity space of I = in(2,18,36)(J),
where J is the ideal in Example 4.0.22. We compute the following reduced
Gröbner basis for the initial ideal {c2, bc, b2+ c, a3c, a9b, a18}. By the argument
of the lemma, the homogeneity space is all vectors which pick the same polyno-
mials as initial forms. This translates just into the condition inω(b

2+c) = b2+c.
Which means ω · (0, 2, 0)t = ω · (0, 0, 1)t. Consequently the homogeneity space
is the hyperplane passing through the origin with normal vector (0, 2,−1).
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In Definition 3.3.1 we defined the lineality space of a cone C. This is a
face of C because (Proposition 3.3.12) it is the intersection of faces of C (every
inequality Ai· gives rise to a face faceAi·

(C)). By the lineality space of a fan we
mean the intersection of all cones in the fan. This is the smallest cone in the
fan. We notice that the lineality space of the Gröbner fan of an ideal I equals
the homogeneity space of I. (Because the homogeneity space is a cone in the
Gröbner fan and has no faces by Lemma 5.8.2.)

In the following we will be interested in ideals in k[x1, . . . , xn] with n − 1-
dimensional homogeneity space. Fix such an ideal I and call the homogeneity
space L. Let g be an element of a reduced Gröbner basis of I. By Proposi-
tion 5.3.9 we know the g must be homogeneous in any grading given by a vector
ω ∈ L. Let cxα and c′xβ be two terms of g we conclude that ω · α = ω · β for
all ω ∈ L. That is α − β is in the orthogonal complement L⊥. In other words
the exponent vectors of g lie on a line, or equivalently, the Newton polytope of
g is a line segment. We have proved the following lemma.

Lemma 5.8.4 Let I ⊆ k[x1, . . . , xn] be an ideal with a n − 1-dimensional ho-
mogeneity space and ≺ a term ordering. The Newton polytope of any g ∈ G≺(I)
is either a single point or a line segment. Furthermore, the line segments, as g
runs through G≺(I), are parallel.

Fix a generator v ∈ Rn for L⊥. We wish to argue that our “very homogeneous”
ideal has at most two reduced Grb̈ner bases. Let G be one reduced Gröbner
basis of I and suppose we want to compute G≺(I) with respect to some term
ordering ≺. Only one of two things can happen: ≺ will pick the terms with
exponent in direction v or in direction −v. As we observed earlier (proof of
Proposition 5.3.9) all intermediate polynomials in a run of Buchberger’s algo-
rithm on G will also be homogeneous and therefore line segments (or points).
We have proved the following Proposition.

Proposition 5.8.5 Let I ⊆ k[x1, . . . , xn] be an ideal with a n− 1-dimensional
homogeneity space. Then I has only one or two reduced Gröbner bases.

Example 5.8.6 The ideal 〈x − y〉 ⊆ Q[x, y] is homogeneous in the standard
grading and has the reduced Gröbner bases {x− y} and {y − x}.

Example 5.8.7 The ideal I := 〈xy− 1〉 ⊆ Q[x, y] is homogeneous in the grad-
ing induced by the vector (1,−1). The homogeneity space of I is span{(1,−1)}.
The ideal has only on reduced Gröbner basis because xy has to be larger than
−1 in every term ordering.

Let A ∈ Rd×n be a matrix whose rows form a basis of the lineality space of
I. Let’s assume that the rowspace contains a positive vector. This matrix gives
rise to an A-grading as in Section 5.4. Returning to our ideal I, we notice by
Lemma 5.4.3 that its A-graded Hilbert function equals that of in≺(I) for any
≺. Therefore, the two initial ideals of I have the same Hilbert functions.

Our final observation in this subsection is that the Hilbert function
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Figure 12: The two staircase diagrams of the initial ideals of Example 5.8.8.

Example 5.8.8 The “very homogeneous” ideal I in Example 5.8.3 has two
reduced Gröbner bases:

{c2, bc, b2 + c, a3c, a9b, a18}

and
{c+ b2, b3, a3b2, a9b, a18}

The corresponding staircase diagrams are shown in Figure 12. Let’s pick A =
[

0 1 2
1 0 0

]

whose rowspace is the homogeneity space of I. The monomials of

A-degree

[

2
2

]

are {a2c, a2b2}. Looking at the first Gröbner basis w.r.t. ≺
(and the corresponding initial ideal in≺(I) = 〈c2, bc, b2, a3c, a9b, a18〉) we get

HI
A(

[

2
2

]

) = H
in≺(I)
A (

[

2
2

]

) = 2 − 1 = 1 because there are two monomials of

this A-degree but one is in the initial ideal. For the A-degree

[

4
2

]

we get the

monomials {a2c2, a2b2a2b2c, a2b4}. But here all monomials are in the initial
ideal(s) so the Hilbert function value is 3− 3 = 0.

5.9 The Gröbner walk

Our observations from the previous subsection can be used to convert Gröbner
bases with respect to some ordering ≺ into a Gröbner basis with respect to
some other ordering ≺′. To get a geometric sense of what is going on we pick
a vector ω ∈ C≺(I) and let A ∈ Rd×n be a matrix representation of ≺′. For
ε > 0 very small aε := At(1, ε, ε2, . . . , εd−1)t is going to be in C≺′(I). (See the
argument in the proof of Proposition 4.2.3.) Pick a small ε > 0 such that this
is the case. We now consider the line segment between ω and Aε. This line
segment passes through a set of full-dimensional Gröbner cones. We wish to
compute the reduced Gröbner bases for these.
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We now discuss how to come from one cone to the next. Suppose that we
know a Gröbner basis G≺(I). Let C = C≺(I) and suppose that the line segment
from Aε passes through a facet F of C. This facet F is also a facet of a different
cone C ′ ∈ Gfan. Let N ∈ Rn be the normal pointing in direction C ′. This facet
is in the Gröbner fan of I and it contains some ω in its relative interior. Let’s
assume that ω is positive. (If it is not positive to choose ω positive, then it is
because F lies outside Rn

>0 and we are not sure that there is a Gröbner cone
on the other side of F .) For ε′ > 0 sufficiently small the vector ω + ε′N is in
C ′. Our (sub)goal is to compute G≺′

ω+ε′N
(I).

We first notice that in≺′

ω+ε′N
(I) = in≺′(inω+ε′N (I)) = in≺′(inN (inω(I))) =

in≺′

N
(inω(I)). Using Algorithm 4.4.5 we compute:

G≺(inω(I)) = {inω(g) : g ∈ G≺(I)}

Because ω is positive, inω(I) has two reduced Gröbner bases as explained in
Section 5.8. To compute the other we use Buchberger’s Algorithm 1.7.3 with
a term ordering ≺′

N induced by N . Taking the initial terms of the computed
Gröbner basis we get generators for the initial ideal in≺′

ω+ε′N
(I). We are almost

there - we know the initial terms of the elements in the Gröbner basis. We just
need to find their tail.

To make things clear we present an example:

Example 5.9.1 Let I = 〈x2−y, z2−xy+2〉 ⊆ Q[x, y, z]. We have the reduced
Gröbner basis

G≺(I) = {y2 − 2x− xz2, xy − 2− z2, x2 − y}

The Gröbner cone C≺(I) equals cone((0, 0,−1), (2, 1, 0), (2, 4, 3)). See Fig-
ure 13. An interior point of the Gröbner cone is (5, 7, 3). We choose F =
cone((2, 1, 0), (2, 4, 3)). A normal vector for F is N = (1,−2, 2). The vector
ω = (4, 5, 3) is in the relative interior of F . We get that

G≺(inω(I)) = {y2 − xz2, xy, x2}

The other reduced Gröbner basis of inω(I) is:

{y3, xz2 − y2, xy, x2}

Hence we need to find four polynomials in I which have the above underlined
initial terms with respect to

The following algorithm is useful:

Algorithm 5.9.2
Input: A reduced Gröbner basis G≺′′(I), a vector ω ∈ C≺′′(I) and an ω-
homogeneous polynomial h ∈ inω(I) \ {0}.
Output: A polynomial f ∈ I such that inω(f) = h.
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Y X

Z

Figure 13: In Example 5.9.1 we walk from the point (5, 7, 3) towards (1, ε, ε2).
We need to cross just a single facet. The picture shows the part of the Gröbner
fan which is in the positive orthant. On the right all the staircase diagrams of
the monomial initial ideals are shown. In the example we walk from picture
number 4 (center, right) to number 1 (top, left). The standard monomials are
shuffled around. The top part of one pile in picture number 4 is translated
along the vector −N = (−1, 2,−2) to get picture number 1.

• f := h − r, where r is the remainder of division of h with G≺′′(I) using
the term order ≺′′.

Proof. We first notice that the division algorithm will give remainder 0 if run
on h and {inω(g) : g ∈ G≺′′(I)} because this set is a Gröbner basis. The division
algorithm finds ai ∈ k[x1, . . . , xn] and gi ∈ G≺′′(I) such that:

h = 0 +
∑

i

aiinω(gi),

Reducing h with G≺′′(I) we can make the same choices which would reduce m
to 0 if the elements of G≺′′(I) had only consisted of their ω-initial forms. That
is after the first steps we have

h = 0 +
∑

i

aigi +
′′ lower ω − degree terms′′,

where the lower degree terms have ω-degree less than that of h. We continue
the division on the lower degree terms and get

h = r +
∑

i

aigi +
∑

j

bjfj ,

with bj ∈ k[x1, . . . , xn] and fj ∈ G≺′′(I) and r is the remainder. For every
f ∈ G≺′′(I) we have in≺′′(f) = in≺′′(inω(f)). That is, the initial term has
maximal ω-degree, showing that the ω-degree (of p in Algorithm 1.5.1) cannot
increase during the division. Therefore all terms of r and

∑

j bjfj have lower ω-
degree than h. Subtracting r on both sides we get inω(h−r) =

∑

i aiinω(gi) = h.
2
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Example 5.9.3 Continued. We apply the division algorithm to the four poly-
nomials

• y3 → y3−y(y2−2x−xz2) = 2xy+xyz2 → 2xy+xyz2−2(xy−2− z2) =
xyz2 + 4 + 2z2 → xyz2 + 4 + 2z2 − z2(xy − 2− z2) = 4 + 4z2 + z4

• xz2 − y2 → xz2 − y2 + (y2 − 2x− xz2) = −2x

• xy → 2 + z2

• x2 → y

We now subtract from the original terms and get {y3 − 4 − 4z2 − z4, xz2 −
y2 + 2x, xy − 2 − z2, x2 − y} which we know is a Gröbner basis with respect
to ≺′

ω+ε′N . The final step in the algorithm is to autoreduce the Gröbner basis
using Algorithm 1.7.9. In our example the Gröbner basis is already a reduced
Gröbner basis.

We describe the complete algorithm for walking through a facet.

Algorithm 5.9.4
Input: A reduced Gröbner basis G≺(I) of an ideal I ⊆ k[x1, . . . , xn] and a facet
F of C≺(I), with F containing at least one positive vector. Finally, an outer
normal N ∈ Rn such that faceN (C) = F .
Output: The reduced Gröbner basis G≺′(I) with C≺′(I) being the other full-
dimensional Gröbner cone having F as a facet.

• Let ω ∈ Rn
>0 ∩ F .

• Compute G≺(inω(I)) = {inω(g) : g ∈ G≺(I)}.

• Compute the other Gröbner basis G≺N
(inω(I)) using Buchberger’s algo-

rithm.

• For each h ∈ G≺N
(inω(I)) apply Algorithm 5.9.2. Store the computed set

of polynomial in G.

• Autoreduce G and output the result which is the desired G≺′(I).

We notice that it is never necessary to know ≺′ in the algorithm.

Sometimes walking through a single facet is not enough. Corollary 4.2.4
gives a way to find the inequalities for C≺′(I). To find the facet to walk through,
we find the first inequality which is violated when moving from a long the
segment line from our starting vector ω ∈ C≺(I) towards our target aε. The
process is repeated for the next cone until we find the cone containing aε. This
is known as the Gröbner walk procedure. It is sometimes useful when we want
to compute a Gröbner basis with respect to a difficult term ordering (such as
the lexicographic) and know one for a “cheap” ordering (such as graded reverse
lexicographic).
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6 Toric ideals

We have seen in Example 5.8.3 how to compute the homogeneity space C0(I) of
an ideal I. We can write a generating set of the homogeneity space as the rows
of a d× n matrix. Then I will be A-homogeneous. In Section we will see how
one can start with a matrix A and construct and A-homogeneous ideal. There
are many such A-homogeneous ideals. Toric ideals is an interesting kind.

6.1 Saturation

This section is based on [8, Section 3.2].

Definition 6.1.1 Let R be a commutative ring and I ⊆ R an ideal and f ∈ R.
We define the ideal quotients

(I : f) = {g ∈ R : gf ∈ I} and

(I : f∞) = {g ∈ R : ∃n ∈ N : gfn ∈ I}.

Notice that (I : f) ⊇ I ⊆ (I : f∞). These sets are in fact ideals.

Proposition 6.1.2 The sets (I : f) and (I : f∞) are ideals.

Proof. We will only prove the case (I : f∞). Let g, g′ ∈ (I : f∞). Then
gfn ∈ I and g′fn′ ∈ I for some n and n′ in N. This implies gfn′′

, g′fn′′ ∈ I for
n′′ = max(n, n′) and we conclude (g + g′)fn′′

and g + g′ ∈ (I : f∞). Clearly
multiplication by an element in (I : f∞) gives a new element in (I : f∞). 2

The following lemma tells us how to compute ideal quotients in k[x1, . . . , xn]
with respect to one of the variables.

Proposition 6.1.3 [13]Let I ⊆ k[x1, . . . , xn] be a homogeneous ideal with re-
spect to a grading induced by a positive vector v ∈ Rn

>0. Let ≺ be a term ordering
satisfying (for all v-homogeneous elements f ∈ k[x1, . . . , xn]):

xn|in≺(f) ⇒ xn|f.

If G is a Gröbner basis for I ⊆ k[x1, . . . , xn] with respect to ≺ consisting of
v-homogeneous elements then

G′ := {f ∈ G : xn 6 |f} ∪ {f/xn : f ∈ G, xn|f}

is a Gröbner basis for (I : xn) with respect to ≺ and

G′′ := {f/xin : f ∈ G, xin|f, xn 6 |f/xin}

is a Gröbner basis for (I : x∞n ) with respect to ≺.
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Proof. We will prove only the last claim. Clearly, G′′ ⊆ (I : x∞n ). To prove
in≺(I : x∞n ) ⊆ 〈in≺(f) : f ∈ G′′〉 let g ∈ (I : x∞n ). We want to show that
in≺(g) ∈ 〈in≺(f) : f ∈ G′′〉. There exists an r such that gxrn ∈ I. Since G is a
Gröbner basis there exists an f ∈ G such that in≺(f)|in≺(gxrn) = in≺(g)x

r
n. Let

R be the number of times that xn divides f . By the choice of term order this
is also the number of times that xn divides in≺(f) since f is v-homogeneous.
We have in≺(f/x

R
n )x

R
n |in≺(g)xrn. Since in≺(f/x

R
n ) does not contain any xn we

have in≺(f/x
R
n )|in≺(g) and we are done since f/xRn ∈ G′′. 2

Remark 6.1.4 To apply the proposition we must be sure that a term ordering
with the desired property exists. As mentioned in Remark 5.5.4 if we have an
ideal homogeneous in a positive grading, then there exists a term ordering which
agrees with the reverse lexicographic ordering (which is not a term ordering
itself) on all homogeneous elements. We observe the the reverse lexicographic
ordering has the property xn|in≺(f) ⇒ xn|f for homogeneous f .

We introduce the concept of saturated ideals and show some basic properties.

Definition 6.1.5 Let f ∈ k[x1, . . . , xn]. An ideal I ⊆ k[x1, . . . , xn] is called
f -saturated if (I : f∞) = I.

Lemma 6.1.6 Let I ⊆ k[x1, . . . , xn] be an ideal and f, g ∈ k[x1, . . . , xn] then

(I : fg∞) = ((I : f∞) : g∞).

Proof. To show the inclusion ⊆, let h ∈ (I : (fg)∞). Then h(fg)n ∈ I ⇒
hfngn ∈ I ⇒ hgn ∈ (I : f∞) ⇒ h ∈ ((I : f∞) : g∞) for some n.

To show the inclusion ⊇, let h ∈ ((I : f∞) : g∞). Then hgn ∈ (I : f∞) ⇒
hgnfm ∈ I ⇒ h(fg)max(n,m) ∈ I ⇒ h ∈ (I : (fg)∞) for some n,m ∈ N. 2

Corollary 6.1.7 An ideal I ⊆ k[x1, . . . , xn] is (fg)-saturated if it is f -saturated
and g-saturated.

Proof. We know that (I : f∞) = I and (I : g∞) = I. Hence I = (I : f∞) =
((I : g∞) : f∞) = (I : (fg)∞). 2

Remark 6.1.8 If an ideal I ⊆ k[x1, . . . , xn] is fg-saturated then it is f -
saturated. This can be seen by using the lemma and the definition to get
the inclusions:

(I : f∞) ⊇ I = (I : (fg)∞) = ((I : f∞) : g∞) ⊇ (I : f∞).

Lemma 6.1.9 If I and J are ideals in k[x1, . . . , xn] satisfying I ⊆ J ⊆ (I : f∞)
then (J : f∞) = (I : f∞).

Proof. The inclusion ⊇ follows from I ⊆ J . To prove the other inclusion, let
h ∈ (J : f∞). Then hfn ∈ J ⊆ (I : f∞) and h times f to some power is indeed
in I. 2
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6.2 Lattice ideals

Definition 6.2.1 Let u ∈ Zn. We define the binomial pu := xu
+ − xu

−

, where
u+i = max(ui, 0) and u−i = max(−ui, 0).

Definition 6.2.2 For C ⊆ Zn we define:

JC := 〈pv : v ∈ C〉.

If C is a lattice, then JC is called a lattice ideal.

Let u ∧ v denote the coordinatewise minimum of u and v and u ∨ v the
coordinatewise maximum. We notice that for u, v ∈ Nn

xu − xv = xu∧vpu−v (3)

by counting appearances of xi for each of the cases ui < vi, ui > vi and ui = vi.

Lemma 6.2.3 Let u, v ∈ Zn be vectors then

xu
+∨v+

xu+ pu − xu
+∨v+

xv+
pv = xwpu−v

for some w ∈ Nn. In particular, if ≺ is a term ordering on k[x1, . . . , xn] such
that in≺(pu) = xu+ and in≺(pv) = xv+ then

S(pu, pv) = xwpu−v.

Proof. We compute (using Equation 3 for the third equality):

xu
+∨v+

xu+ pu − xu
+∨v+

xv+
pv = −xu

+∨v+

xu+ xu
−

+
xu

+∨v+

xv+
xv

−

= x(u
+∨u+)−v − x(u

+∨u+)−u

= x((u
+∨u+)−v)∧((u+∨u+)−u)p((u+∨u+)−v)−((u+∨u+)−u) = xwpu−v

Here xw is chosen to be the greatest common divisor of the two terms x(u
+∨u+)−v

and −x(u
+∨u+)−u.2

Lemma 6.2.4 The elements of a reduced Gröbner basis of a lattice ideal JL
have the form xu − xv.

Proof. The lattice ideal has a finite generating set. Each generator can be
expressed using finitely many pv with v ∈ L. In total we need only finitely
many pw to generate IL. We now compute a Gröbner basis. The S-polynomial
of two binomials of the desired form still has the desired form. The remainder
of a binomial of the desired form by a set of binomials of the desired form gives
a remainder which is again of the desired form. Minimizing and autoreducing
the basis keeps this desired form. 2
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Lemma 6.2.5 Let JL be a lattice ideal. Then JL contains no monomial. Fur-
thermore, xu − xv ∈ JL ⇔ u− v ∈ L.

Proof. Each generator for JL in Definition 6.2.2 has the property that evaluating
it at the point (1, 1, . . . , 1) gives value 0 ∈ k. Therefore this holds for any
polynomial in JL. In particular, a polynomial in JL with just one term would
have to have coefficient zero – a contradiction.

Suppose u − v ∈ L. By Equation 3, xu − xv = xu∧vpu−v which is in JL
because pu−v ∈ JL by definition. This proves the “⇐” implication.

Consider the grading φ : Nn → Zn/L by letting φ(v) := v + L. Since
for every v ∈ L, φ(v+) − φ(v−) = φ(v+ − v−) = φ(v) ∈ L the binomial pv
is φ-homogeneous. Since this holds for all v ∈ L, the lattice ideal JL is φ-
homogeneous. By Proposition 5.3.14, if xu − xv ∈ JL then the φ-homogeneous
parts of this binomial are in JL. Since JL contains no monomials, xu−xv must
be a φ-homogeneous part. This proves φ(u) = φ(v), implying that u+L = v+L
and therefore u− v ∈ L. 2

Proposition 6.2.6 The elements of G≺(JL) for a lattice ideal JL have the form
xw

+ − xw
−

with w ∈ Zn.

Proof. By Lemma 6.2.4 we know that every reduced Gröbner basis element is
of the form xu − xv. Consider such a binomial. By Lemma 6.2.5 we know that
u−v ∈ L. Since (u−v)+−(u−v)− = u−v the lemma gives x(u−v)+−x(u−v)− ∈
JL. Notice xu − xv = xu∧v(x(u−v)+ − x(u−v)−). Because xu = in≺(x

u − xv),
in≺(x

(u−v)+ −x(u−v)−) = x(u−v)+ . If x(u−v)+ divides xu strictly, then xu cannot
be one of the minimal generators of in≺(I). Hence u∧ v = 0 and (u− v)+ = u.
We also have u− v = (u− v)+ − (u− v)−, implying v = (u− v)−. 2

Another way of phrasing the proposition is by saying that monomials of a
binomial of a reduced Gröbner basis of a lattice ideal have no common factors.

Lemma 6.2.7 Every lattice ideal JL is xi saturated.

Proof. For simplicity we shall prove this only in the case when JL is homoge-
neous with respect to a positive grading. We need to check (JL : x∞i ) = JL.
Without loss of generality we may assume i = n. Applying Proposition 6.1.3
to compute (JL : x∞i ) we get G = G′′ because no Gröbner basis element is
divisible by xn (Proposition 6.2.6). This proves that (JL : x∞i ) = JL. 2

Proposition 6.2.8 Let C ⊆ Zn be generators of a lattice L. Then (JC :
(x1 · · ·xn)∞) = JL.

Proof. We start by showing the “⊇” inclusion. If pu ∈ (JC : (x1 · · ·xn)∞) then
p−u ∈ (JC : (x1 · · ·xn)∞). We observe that if pu and pv ∈ (JC : (x1 · · ·xn)∞),
then by Lemma 6.2.3 xwpu−v ∈ (JC : (x1 · · ·xn)∞) for w = u+ ∧ v+. Since
(JC : (x1 · · ·xn)∞) = (JC : (x21 · · ·x2n)∞) = ((JC : (x1 · · ·xn)∞) : (x1 · · ·xn)∞)
by Lemma 6.1.6, (JC : (x1 · · ·xn)∞) is x1 · · ·xn-saturated and pu−v ∈ (JC :
(x1 · · ·xn)∞). Consider a generator pw for JL with w ∈ L. We can write w =
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∑

i vi −
∑

i ui where ui, vi ∈ C and vectors possibly appear more than once in
the sum. Applying our observations repeatedly we get pw ∈ (JC : (x1 · · ·xn)∞).

To prove “⊆”, observe that JC ⊆ JL implies (JC : (x1 · · ·xn)∞) ⊆ (JL :
(x1 · · ·xn)∞) which again equals ((· · · (JL : x∞1 ) · · · ) : x∞n ) = JL by repeated
use of Lemma 6.1.6 and Lemma 6.2.7. 2

The proposition actually gives an algorithm for computing lattice ideals. We
shall make this completely precise in the following section in the special case of
toric ideals.

6.3 Toric ideals

In this section we study a special class of lattice ideals known as toric ideals.

Definition 6.3.1 Let A ∈ Zd×n be a matrix. We define the toric ideal IA := JL
where L ⊆ Zn is the lattice kernel of A.

Notice that IA is homogeneous with respect to the grading induced by A be-
cause if Av = 0 then Av+ = Av− and pv = xv

+ − xv− is A-homogeneous. By
Definition 6.2.2 JL is A-homogeneous. The ideal is also homogeneous in any
grading induced by a vector of rowspace(A). In particular, if the rowspace con-
tains a positive vector, Proposition 6.1.3 applies. And the following algorithm
can be used to compute IA.

Algorithm 6.3.2
Input: A matrix A ∈ Zd×n containing a positive vector in its rowspace.
Output: Generators for the toric ideal IA.

• Compute a lattice basis C ⊆ Zn of the lattice kernel of A using Algo-
rithm 2.1.11

• Construct the ideal JC using Definition 6.2.2.

• Compute IA = (· · · (JC : x∞1 ) : · · · : x∞n ) using Algorithm 6.1.3.

Proof. By the Definition 6.3.1 and Proposition 6.2.8 we know that IA = (JC :
(x1 · · ·xn)∞). Now we only need to observe that

(JC : (x1 · · ·xn)∞) = (· · · (JC : x∞1 ) : · · · : x∞n )

by applying Lemma 6.1.6 repeatedly. 2

Alternatively, IA can be computed via elimination as we will now explain.
Given A ∈ Zd×n with columns a1, . . . , an, we define the ring homomorphism

πA : k[x1, . . . , xn] → k[t±1
1 , . . . , t±1

d ]

cxv 7→ ctAv

Here c ∈ k, v ∈ Nn and k[t±1
1 , . . . , t±1

d ] is the Laurent polynomial ring in d
variables. We only defined what πA does to a single term, while the properties
of a ring homomorphisms tells us how to extend πA to k[x1, . . . , xn].

An other way of defining πA is by saying that for all i = 1, . . . , n it substi-
tutes xi with tai .
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Example 6.3.3 Let A =

[

1 1 1
0 1 2

]

. The homomorphism πA : k[x1, . . . , x3] →

k[t±1
1 , t±1

2 ] sends x1x3 − x22 to tA(1,0,1) − tA(0,2,0) = t21t
2
1 − t21t

2
2 = 0. Equivalently,

to (t1)(t1t
2
2)− (t1t2)

2 = 0.

Proposition 6.3.4 Let A ∈ Zd×n. Then IA = ker(πA).

Proof. The inclusion ⊆ is easy: By definition IA is generated by binomials of the
form xu

+ − xu
−

with u ∈ latticekernel(A). But A(u+ − u−) = 0 implies Au+ =
Au− which means that πA(x

u+−xu
−

) = πA(x
u+

)−πA(x
u−

) = tAu+−tAu−

= 0.
Suppose that ⊇ does not hold. Then there is an element f ∈ ker(πA) \ IA.

Choose f such that in≺lex
(f) is smallest possible in the ≺lex ordering. (This can

be done because ≺lex is a well ordering). Without loss of generality in≺(f) = xu

for some u ∈ Nn. Applying πA to f , πA(x
u) has to cancel with some other term

cxv of f . This means πA(x
v) = πA(x

u), implying A(u − v) = 0 and therefore
xu − xv ∈ IA. The polynomial f − (xu − xv) has smaller initial term than f ,
and must therefore be in IA by minimality of the choice of f . However, this
implies f − (xu − xv) + (xu − xv) = f is in IA, which is a contradiction. 2

Corollary 6.3.5 Every toric ideal is a prime ideal.

Proof. Let f, g ∈ k[x1, . . . , xn] and suppose fg ∈ IA. Then 0 = πA(fg) =
πA(f)πA(g). We proved in Exercise 9, Sheet 1 that k[x1, . . . , xn] is an integral
domain. The same argument shows that k[t±1

1 , . . . , t±1
d ] is an integral domain.

We conclude that either πA(f) = 0 or πA(g) = 0. Equivalently f ∈ IA or
g ∈ IA. 2

We will see a second application of the proposition. But first we need a lemma.

Lemma 6.3.6 Let f1, . . . , fn ∈ k[t1, . . . , td]. Let π : k[x1, . . . , xn] → k[t1, . . . , td]
be the ring homomorphism defined by xi 7→ fi. Define the ideal J = 〈x1 −
f1, . . . , xn − fn〉 ⊆ k[t1, . . . , td, x1, . . . , xn]. Then ker(π) = J ∩ k[x1, . . . , xn].

Proof. To prove ⊇ we extend π to π̂ : k[t1, . . . , td, x1, . . . , xn] → k[t1, . . . , td] by
ti 7→ ti. We observe that π̂(xi − fi) = 0 and therefore J ⊆ ker(π̂). Therefore, if
g ∈ J ∩ k[x1, . . . , xn] then 0 = π̂(g) = π(g) since g contains no ti’s.

Let g ∈ ker(π). We now compute in k[t1, . . . , td, x1, . . . , xn]/J . Notice xi +
J = fi + J . Therefore we may do the substitutions performed by π on the
representative without changing the coset. Hence g+J = 0+J and we conclude
that g ∈ J . 2

Algorithm 6.3.7
Input: A matrix A ∈ Nd×n with columns a1, . . . , an.
Output: Generators for the lattice ideal IA.

• Define the ideal J = 〈x1 − ta1 , . . . , xn − tan〉 ⊆ k[t1, . . . , td, x1, . . . , xn].

• Compute a lexicographic Gröbner basis G for J with t1 ≻ · · · ≻ td ≻ x1 ≻
· · · ≻ xn.
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• Return G ∩ k[x1, . . . , xn].

Proof. The correctness follows from Proposition 6.3.4, Lemma 6.3.6 and Propo-
sition 1.8.1, which tells us how to compute the intersection of an ideal of a
polynomial ring with a polynomial ring with fewer variables. 2

Notice that the algorithm requires the entries of A to be non-negative. It is
possible to extend the algorithm to also work when A has negative entries.

Another important difference between Algorithm 6.3.2 and Algorithm 6.3.7,
is that Algorithm 6.3.2 does many reverse lexicographic Gröbner basis computa-
tions, while Algorithm 6.3.7 does a single lexicographic Gröbner basis computa-
tion. Most often Algorithm 6.3.2 will be fastest. Simply because lexicographic
and term orderings are slow.

6.4 Fibers and integer programming

Let again A ∈ Nd×n. For convenience we assume that A has a positive vector
in its rowspace. We are interested in the following optimisation problem:

minimize ω · v (4)

subject to v ∈ Nn and Av = b

where b ∈ Nd and ω ∈ Rn. This means that we seek an ω-smallest vector v of
natural numbers satisfying Av = b. Such vector v is called the optimal point
and ω · v is called the optimal value. The optimization problem is called an
integer programming problem.

Example 6.4.1 We imagine a country with the following currency. There is
a 3 unit coin, a 5 unit coin and a 7 unit coin. Suppose we want to pay the
amount b ∈ N using coins as few coins as possible. Let A =

[

3 5 7
]

. Then we
want to find v ∈ N3 such that Av = b and (1, 1, 1)t · v is minimal. The v1 is the
number of 3 unit coins, v2 the number of 5 unit coins and v3 the number of 7
unit coins we pay. That is, we want to solve an integer programming problem.

Let’s consider the linear map A : Nn → Nd with v 7→ Av. For b ∈ Nd we
call the preimage A−1(b) = {v ∈ Nn : Av = b} the fibre of b and denote it
Fiber(A, b). We call the points in Fiber(A, b) the feasible points of the opti-
mization problem in Equation 4. Because A is assumed to have some positive
vector ct = qtA in its rowspace (with q ∈ Rd), every point v in the fiber satisfies

ctv = qtAv = qtb. In particular, for all i we have vi ≤ qtb
ci
. This proves that

|Fiber(A, b)| < ∞. (This argument is the similar to that of Lemma 5.4.1.)

Example 6.4.2 Continued. If b = 29, the fiber A−1(b) is

{(1, 1, 3), (0, 3, 2), (5, 0, 2), (4, 2, 1), (3, 4, 0), (8, 1, 0)}.

These points are inside the 2-dimensional polytope {v ∈ R3
≥0 : Av = 29}. The

polytope with its lattice points are drawn in Figure 14.
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Figure 14: See Example 6.4.1. The 2-dimensional polytope defined by Av =
b, v ∈ R3

≥0 and the 6 lattice points in the fiber are shown on the left. The
first coordinate has been projected away to get a two-dimensional drawing.
The arrow shows the direction we want to minimize. The picture on the right
shows the directed graph Fiber≺(A, b), which has a unique sink. To get the
optimization direction in the first picture we cannot simply project away the
last coordinate of (1, 1, 1). In particular it is not obvious that the minimization
direction has been drawn correctly. The easiest way to see this is to evaluate
(1, 1, 1)t · v at each of the 6 lattice points.

We now pick a term ordering ≺ and compute the reduced Gröbner ba-
sis G≺(IA). We identify the point v in the fibre with the monomial xu ∈
k[x1, . . . , xn].

Definition 6.4.3 Let A ∈ Nd×n, b ∈ Nd and ≺ be a term ordering. We define
the directed graph Fiber≺(A, b) as follows. The vertices are A−1(b) ⊆ Nn.
There is an outgoing edge from u for every xα − xβ ∈ G≺(I) with xα|xu and
u− α+ β ∈ Fiber≺(A, b). The outgoing edge ends in v = u− α+ β.

Lemma 6.4.4 There is an edge from u to v in the graph Fiber≺(A, b) if and
only if it is possible to reduce xu to xv with one step of the division algorithm
(Algorithm 1.5.1) where {f1, . . . , fs} = G≺(IA) and we use the term order ≺.

Proof. We only have to check that xu − (xu/xα)(xα − xβ) = xu−α+β. 2

Definition 6.4.5 A sink in a directed graph is a vertex with no out-going
edges.

Example 6.4.6 Continued. Let ≺ be the graded lexicographic term ordering.
Using the variable names x, y, z we have G≺(IA) =

{y7 − z5,

xz − y2,

xy5 − z4,

x2y3 − z3,
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x3y − z2,

x4 − yz}
The graph Fiber≺(A, b) is shown on the right in Figure 14. The vertex (0, 3, 2)
is the unique sink because no initial term in G≺(IA) divides y

3z2.

Proposition 6.4.7 The graph Fiber≺(A, b) has no cycles and a unique sink.
In particular there is a directed path in Fiber≺(A, b) from any vertex to the sink.

Proof. Let u and v be two different sinks in Fiber≺(A, b) then Au = b = Av
implying xu − xv ∈ IA. There must exist an f ∈ G≺(IA) such that in≺(f)
divides in≺(x

u − xv), which is either xu or −xv. But this proves that u and v
cannot both be sinks.

If we have a cycle u0, . . . , us = u0 in the graph Fiber≺(A, b) then it would
be possible for the division algorithm to do the step xu0 → xu1 → xus = xu0

forever, which contradict that the division algorithm always terminates. 2

We now turn to the problem of finding the optimal solution to the integer
programming problem.

Lemma 6.4.8 Let A ∈ Nd×n, b ∈ Nd, ω ∈ Rn and ≺ be a term ordering. Then
the sink of Fiber≺ω(A, b) is an optimal solution to the minimization problem in
Equation 4.

Proof. Let u be the sink, and let v ∈ Fiber(A, b)\{u}. We must show that ω·u ≤
ω ·v. But suppose that ω ·u > ω ·v, then in≺ω(x

u−xv) = xu. Since xu−xv ∈ IA
we have xu ∈ in≺ω(IA) and therefore there exists a binomial xα − xβ ∈ G≺ω(I)
such that xα|xu which means that u is not a sink. A contradiction. 2

Example 6.4.9 Continued. Suppose we know the feasible point (5, 0, 2) of the
integer programming problem. We want to find an optimal point in the to the
problem, that is a point which “minimizes ω”. We find the sink by doing a
polynomial division, starting with the monomial x5z2:

x5z2 → xyz3 → y3z2

In the graph of Figure 14 we move from the left-most matrix to the upper-right
vertex in two steps. The solution (0, 3, 2) is optimal. That is, we need only 5
coins to pay the amount 29, we do it paying 3 five-unit coins and 2 seven-unit
coins.

Notice that there could be more than one optimal solution to the optimiza-
tion problem. That is the case in the example. The solution (1, 1, 3) is also
optimal.

We still did not explain how to find the feasible solution (5, 0, 2) to the
problem. The solution is to introduce artificial variables. We make a new
problem with n+ d variables.
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Proposition 6.4.10 Let A ∈ Nd×n, b ∈ Nd. There exists a feasible v ∈ Nn

with Av = b if and only if the problem

minimize
n+d
∑

i=n+1

ui

subject to [A|I]u = b and u ∈ Nn × Nd

(5)

has an optimal solution u with optimal value 0. Here I denotes the d×d identity
matrix.

Proof. If the new problem has an optimal solution with optimal value 0, then
the last d entries of u must be zero. But this means that if we let v be the first
n entries of u we have b = [A|I]u = Av. Hence v is a feasible solution to the
inequality system of Equation 4.

On the other hand, if Av = b has a solution, then indeed the optimal value
of the new problem is zero. 2

The point of the proposition above is that it is trivial to find a feasible solution to
the problem in Equation 5. Namely, we just take the vector (0, . . . , 0, b1, . . . , bd).

Example 6.4.11 Continued. To find just one way of paying 29 units, we
introduce the artificial coin with value one. We now solve the problem:

minimize (0, 0, 0, 1)t · u
subject to [3 5 7 1]u = 29 and u ∈ N3 × N1

(6)

We compute the Gröbner basis:

{w3 − x, zw − xy, z3 − x7, yw − x2, yz − x4,

y2 − xz, xw2 − y, x2w − z, x3y − z2}
with respect to an ordering≺(0,0,0,1). We now take the feasible solution (0, 0, 0, 29)
of the new problem and convert it to the monomial w29. The remainder pro-
duced by the division algorithm:

w29 → xw26 → · · · → x9w2 → x8y → x5z2

is x5z2, corresponding the the feasible solution (5, 0, 2) of the original problem.

We present the complete algorithm for solving an integer programming prob-
lem using toric ideals:

Algorithm 6.4.12
Input: A ∈ Nd×n, b ∈ Nd, ω ∈ Rn such that A has a positive vector in its
rowspace.
Output: A vector v ∈ Nn such that Av = b and ω ·v is smallest possible among
such vectors.

• Let B := [A|I].
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• Compute the toric ideal IB using Algorithm 6.3.2/6.3.7.

• Compute the Gröbner basis G≺(0,...,0,1,...,1)
(IB), where ≺ is some term or-

dering.

• Compute the remainder xu of x(0,...,0,b1,...,bd) reduced by G≺(0,...,0,1,...,1)
(IB)

using the division algorithm.

• If ∃i ∈ {n+ 1, n+ 2, . . . , n+ d} : ui 6= 0 then the problem Av = b, v ∈ Nn

has no solution and the algorithm terminates.

• Compute the toric ideal IA using Algorithm 6.3.2/6.3.7.

• Compute the Gröbner basis G≺ω(IA).

• Compute the remainder xv of xu reduced by G≺ω(IA) using the division
algorithm.

• The vector v ∈ Nn is an optimal point of the optimization problem.

Remark 6.4.13 The toric ideals IA and IB are strongly related. In fact in
Algorithm 6.3.7 J = IB. Therefore it is not necessary to compute IA from
scratch.

Remark 6.4.14 The optimization problem in Equation 4 above is known as
an integer programming problem. Such problems can be very difficult to solve.
If we change the requirement v ∈ Nn to v ∈ Rn

≥0 then the problem becomes a
linear programming problem. Linear programming problems can be solved with
Dantzig’s simplex algorithm (and also with Algorithm 3.1.3, how?) and even
algorithms with polynomial time complexity are known. The most important
open problem in theoretical computer science (“P 6=NP?”) essentially asks if
integer programming really is harder than linear programming.
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7 Regular triangulations and secondary fans

A triangle in the two-dimensional plane has 3 vertices. The generalisation of a
triangle to higher dimensions is a d-simplex.

Definition 7.0.15 A d-dimensional polytope P ⊆ Rn is called a d-simplex if it
has exactly d+1 vertices. A pointed d+1-dimensional polyhedral cone C ⊆ Rn

is called a (d+ 1-)simplicial cone if it has exactly d+ 1 rays.

We notice that the convex hull of any non-empty subset of the d + 1 vertices
is a face of P and every face is of this form. Similarly, any subset of the d+ 1
rays gives a face of C.

Simplicial cones appear in triangulations of cones over a finite set of vectors.
In this section we will study such triangulations and see how they are connected
to initial ideals of toric ideals.

7.1 Simplicial complexes and Stanley-Reisner ideals

Let [n] denote the set {1, 2, . . . , n}. A polyhedral complex consisting either only
of simplices or only of simplicial cones is called simplicial. Forgetting the ge-
ometry, simplicial polyhedral complexes can be studied purely combinatorially.
For this purpose, any subset of [n] is called an abstract simplex.

Definition 7.1.1 A(n abstract) simplicial complex ∆ on [n] is a set of subsets
of [n] such that whenever s ∈ ∆, then every subset of s is also in ∆. The subsets
in ∆ are called the faces of ∆.

The reader should compare this definition to Definition 3.4.1.

Example 7.1.2 The following is an example of a simplicial complex on [6].

∆ = {{1, 2, 5}, {2, 3, 6}, {3, 1, 4}, {1, 5, 4}, {2, 6, 5}, {3, 4, 6}, {4, 5, 6},

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 5}, {2, 6}, {3, 4}, {3, 6}, {4, 5}, {4, 6}, {5, 6},
{1}, {2}, {3}, {4}, {5}, {6}, ∅}.

Simplicial complexes are connected to polynomial ideals as follows.

Definition 7.1.3 Let ∆ be a simplicial complex on [n]. The Stanley-Reisner
ideal of ∆ is defined as

〈
∏

i∈S

xi : S ⊆ [n], S 6∈ ∆〉 ⊆ k[x1, . . . , xn].

Notice, the Stanley-Reisner ideal is “generated by the minimal non-faces of ∆”.

Example 7.1.4 The Stanley-Reisner ideal of ∆ from Example 7.1.2 is

〈x1x6, x2x4, x3x5, x1x2x3〉 ⊆ k[x1, . . . , x6].

This takes some time to see.
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7.2 Radical ideals

Definition 7.2.1 Let I ⊆ k[x1, . . . , xn] be an ideal. We define the radical of I
to be the set √

I = {f : ∃m ∈ N : fm ∈ I}.
Notice that I ⊆

√
I. An ideal I for which I =

√
I is called a radical ideal.

Example 7.2.2 The radical of 〈a2 + b2 + 2ab〉 ⊆ k[a, b] is 〈a+ b〉 ⊆ k[a, b].

Lemma 7.2.3 The radical of an ideal is an ideal.

Proof. Left to the reader. 2

Lemma 7.2.4 The radical of a monomial ideal I ⊆ k[x1, . . . , xn] is a monomial
ideal generated by monomials of the form

∏

i∈S xi where S ⊆ [n]. Furthermore,
any ideal generated by such monomials is a radical ideal.

Proof. Suppose f ∈
√
I. Then for some m ∈ N we have fm ∈ I. Consider a

term of f and let S ⊆ [n] index the variables xi appearing in this term. There
is also a term in fm involving only these variables (f|xi=0 for i 6∈S 6= 0 implies
(fm)|xi=0 for i 6∈S = (f|xi=0 for i 6∈S)

m 6= 0 because k[x1, . . . , xn] is an integral do-
main). Since I is a monomial ideal the term is in I and therefore

∏

i∈S xi is in√
I. Hence, for every f ∈

√
I we have shown that its terms are in

√
I which

proves that
√
I is a monomial ideal. Moreover,

√
I is generated by terms of

form
∏

i∈S xi with S ⊆ [n].
To prove the last claim, suppose I is generated by such monomials. We

must show that
√
I ⊆ I. Let f ∈

√
I be a monomial with fm ∈ I. Then there

exists S ⊆ [n] such that
∏

i∈S xi ∈ I and
∏

i∈S xi|fm, implying
∏

i∈S xi|f . This
prove that f ∈ I as desired. 2

Example 7.2.5 We have
√

〈a3b, c2, cb2〉 = 〈ab, c, cb〉 = 〈ab, c〉 ⊆ k[a, b, c].

7.3 Regular triangulations of vector configurations

In what follows we let A ∈ Zd×n and think of the columns a1, . . . , an of A as
being vectors of a vector configuration. For simplicity we assume that (1, . . . , 1)
is in the rowspace of A. Identifying [n] with the columns of A we wish to define
a simplicial complex ∆ω(A) on [n] for ω ∈ Rn. A set S ⊆ [n] is in ∆ω(A) if and
only if there exists v ∈ Rd such that v · ai − ωi = 0 for i ∈ S and v · ai − ωi < 0
for i 6∈ S. In other words, we take the vectors a1, . . . , an and lift them into
Rd+1 by appending the additional coordinates ω1, . . . , ωn. We now form the
cone Pω := cone((a1, ω1), . . . , (an, ωn)). This cone has “lower faces”, namely
faces of the form face(v,−1)(Pω) with v ∈ Rd. For each such face we take the
indices of the lifted vectors in that face and let them form a simplex in ∆ω(A).
As Example 7.3.2 shows this definition does not work for all ω, so we need to
be very careful.
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1

1

1

1 0

Figure 15: The projection of the lower faces of the 3-dimensional polytope
constructed in Example 7.3.1 gotten by intersecting Pω with {0} × R3. The
numbers indicate the lifted heights of the vectors.

Example 7.3.1 Consider

A =





1 1 1 1 1
0 0 1 1 2
0 1 0 1 0



 .

We choose ω = (1, 1, 0, 1, 1). We now construct the lifted cone Pω and look at
its lower faces. The cone is 4-dimensional, but since the vector (1, 1, 1, 1, 1) is in
the row space of A all the column vectors are contained in an affine hyperplane
H ⊆ R3 not passing through zero. Therefore, finding lower faces of Pω is the
same as finding lower faces of Pω ∩ (H × R). Thus finding the simplices of
∆ω(A) amounts to finding the lower faces of a 3-dimensional polytope. From
Figure 15 we read off

∆ω(A) = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 2}, {1, 3}, {2, 3}, {2, 4},

{3, 4}, {3, 5}, {4, 5}, {1}, {2}, {3}, {4}, {5}, ∅}

Example 7.3.2 Choose ω = 0 and consider

A =





1 1 1 1
0 0 1 1
0 1 0 1



 .

The square itself {1, 2, 3, 4} becomes a subset in ∆ω(A). But {1, 2, 3} 6∈ ∆ω(A),
so ∆ω(A) is not a simplicial complex.

We will say that ω is generic if ∆ω(A) is a simplicial complex. A sufficient
condition for ω to be generic is that the lifted vectors are linearly independent.
In particular, any set of d + 1 of the lifted vectors is not contained in a d-
dimensional subspace. Example 7.3.2 does not satisfy this requirement.

By a regular triangulation of the column vectors of A we mean a simplicial
complex of form ∆ω(A) or sometimes the polyhedral complex obtained by pro-
jecting the lower faces of Pω to Rd. In general, a triangulation of the columns
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23

1

4

5
6

Figure 16: This picture can be interpreted as the simplicial complex of Exam-
ple 7.1.2 or as the triangulation of Example 7.3.3. In the latter case, what we
see is actually how the positive orthant R3

≥0 is subdivided into simplicial cones.

of A is a polyhedral complex consisting of simplicial cones which cover cone(A)
and whose rays are generated by columns of A. The following example shows
that not every triangulation is regular. That is, not every triangulation comes
from a lift ω.

Example 7.3.3 [13, Example 8.2] Consider the matrix with columns a1, . . . , a6

A =





4 0 0 2 1 1
0 4 0 1 2 1
0 0 4 1 1 2



 .

The cone spanned by the columns of A is the positive orthant R3
≥0. We may

cover the positive orthant with the simplicial cones shown in Figure 16. How-
ever, there is no ω ∈ R6 inducing this as a regular triangulation, because the
appearance of {1, 5} as a lower face implies

4

5
ω4 +

1

5
ω2 >

4

5
ω5 +

1

5
ω1

since 4
5a4 +

1
5a2 =

4
5a5 +

1
5a1. Similarly

4

5
ω5 +

1

5
ω3 >

4

5
ω6 +

1

5
ω2

4

5
ω6 +

1

5
ω1 >

4

5
ω4 +

1

5
ω3

Adding up the three inequalities we get the contradiction

4

5
(ω4 + ω5 + ω6) +

1

5
(ω1 + ω2 + ω3) >

4

5
(ω4 + ω5 + ω6) +

1

5
(ω1 + ω2 + ω3).
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7.4 Sturmfels’ Theorem

We now presents the theorem which ties initial ideal, radicals, triangulations
and Stanley-Reisner ideals together. For the proof we need to be a bit careful
about what generic means in this case.

Theorem 7.4.1 (Sturmfels, 1991) Let A ∈ Zd×n with a positive vector in
its rowspace, then for generic ω ∈ Rn we have

√

inω(IA) is the Stanley-Reisner
ideal of ∆ω(A).

Proof. We must prove

√

inω(IA) = 〈
∏

i∈S

xi : s ⊆ [n] ∧ s 6∈ ∆ω(A)〉.

For “⊇” let S ⊆ [n] be a non-face of ∆ω(A). This means that s does not define
a lower face of Pω. In other words, there does not exist v ∈ Rd such that

∀i ∈ [n] \ S : v · ai − ωi < 0

and ∀i ∈ S : v · ai − ωi = 0

Equivalently, there does not exist v ∈ Rd+1 with vn+1 ≤ −1 such that

∀i ∈ [n] \ S : [ati, ωi]v ≤ −1

and ∀i ∈ S : [ati, ωi]v ≤ 0 and − [ati, ωi]v ≤ 0

The condition of the non-existence of v above is equivalent to the polyhedral
cone PA′b′ = {v ∈ Rd+1 : A′v ≤ b′} being empty, where

A′ =

[

MAT Mω
0 1

]

where M has a row ei for each i 6∈ S and rows ei and −ei for each i ∈ S. The
vector b′ is −1 for each of the first set of rows of M and on the last entry.

By Farkas’ Lemma 3.3.6 we can find y ∈ R
n+|S|+1
≥0 such that ytA′ = 0 and

ytb′ = (−1). Since the set of possible y vectors is described by inequalities

with rational coordinates, we may assume that y ∈ Q
n+|S|+1
≥0 . (The y could be

found using Fourier-Motzkin Algorithm 3.1.3 which produces rational output
on rational input.) Let y′ be the subvector of the first n+ |S| coordinates of y.
Then y′tMAt = 0. In particular M ty′ ∈ ker(A). Suppose M ty′ = 0 then y has
to be zero on coordinates indexed by [n] \S. But then ytb′ = (−1) gives that y
has last coordinate 1 which together with ytA′ = 0 implies y′tMω = −1. That
contradicts ytA′ = 0.

We scale M ty′ positively to get a vector u ∈ Zn \ {0} with the property
Au = 0. Therefore xu

+ − xu
− ∈ IA. By construction of M , xu

−

involves only
variables indexed by S. We just need to argue that inω(x

u+ − xu
−

) = −xu
−

which would imply xu
− ∈ inω(IA) and therefore

∏

i∈S xi ∈
√

inω(IA). We know
already from ytA′ = 0 (since last coordinate of y is non-negative) that u ·ω ≤ 0.
Since ω is generic we get u · ω < 0 as wanted.
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For “⊆” suppose that for some subset S ⊆ [n] we have
∏

i∈S xi ∈
√

inω(IA).
Then there must exist a vector u ∈ Zn such that Au = 0, ui ≥ 0 for i 6∈ S
and u · ω < 0. We can express this vector as a non-negative combination of
the rows of M , say u = y′tM . With the definition of A′ as above, y′tMω < 0
implies that we can find a last positive coordinate for y = (y′, ·) such that
ytA′ = 0. Moreover, by the choice of b and since ui ≥ 0 for i 6∈ S we have
ytb′ < 0 which means that from the inequality description of PA′b′ we make
non-negative combinations to reach an inequality 0 = ytA′ ≤ ytb′ < 0 which
cannot be satisfied. Hence S is a non-face. 2

Remark 7.4.2 In the proof u 6= 0 is in the lattice kernel of A. If ω ∈ Rn has
the property that ω · u 6= 0 for all u 6= 0 in the lattice kernel of A, then ω is
sufficiently generic for the theorem to hold. Such generic vectors exist in any
open ε-ball (for n > 0). For n = 2 take for example ω ∈ Q× (R \Q).

Example 7.4.3 Let

A =

[

1 1 1 1
0 1 2 3

]

.

We use Algorithm 6.3.2 to compute the toric ideal IA ⊆ k[a, b, c, d]. We already
found a basis for the lattice kernel in Exercise 4, Sheet 3. For example this one:

C = {(1,−2, 1, 0)t, (2,−3, 0, 1)t}

The algorithm tells us first to consider JC = 〈ac− b2, a2d− b3〉. We must now
compute IA = ((((Jc : a∞) : b∞) : c∞) : d∞). The first step is to compute a
reduced Gröbner basis of JC with respect to a graded reverse lexicographic ≺
with d ≺ c ≺ b ≺ a. We get

{b2 − ac, abc− a2d, a2c2 − a2bd}.

We can divide out by a (repeatedly) in the second and third generator and get
the following Gröbner basis for (JC : a∞):

{b2 − ac, bc− ad, c2 − bd}.

We change the term ordering and compute the reduced Gröbner basis

G = {c2 − bd, bc− ad, b2 − ac}.

Here b does not divide any polynomial, so this is a Gröbner basis for ((JC : a∞) :
b∞). We repeat this process for c and d, but in both iterations, we cannot divide
by the variable. Hence the Gröbner basis above is already a Gröbner basis for
IA.

Let’s read off the Gröbner cone for the reduced Gröbner basis G above. We
will use Corollary 4.2.4. The vector ω ∈ R4 is in C≺(IA) if and only if

in≺(inω(c
2 − bd)) = c2 and in≺(inω(bc− ad)) = bc and in≺(inω(b

2 − ac)) = b2.
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With matrix representation we may write this as





0 1 −2 1
1 −1 −1 1
1 −2 1 0



ω ≤ 0.

The second inequality is a consequence of the first and the third. Therefore
C≺(IA) ⊆ R4 has just two facets. Its lineality space is two-dimensional.

Since (1, 1, 1, 1) is in the row-space of A, the toric ideal IA is homogeneous
in the total grading. By Proposition 5.5.3 the Gröbner fan covers all of R4.

We would like to find another Gröbner cone. We can use Algorithm 5.9.4
of the Gröbner walk to find one of the two neighbouring cones. Continuing in
this way, we get all cones of the form C≺′(IA) where ≺′ is a term ordering.
Furthermore this procedure also gives us all of the initial ideals in≺′(IA):

G≺′(IA) in≺′(IA)
√

in≺′(IA)

{bd− c2, ad− bc, ac− b2} 〈bd, ad, ac〉 〈bd, ad, ac〉
{bd− c2, b2 − ac, ad− bc} 〈bd, b2, ad〉 〈b, ad〉
{bd− c2, bc− ad, b2 − ac, ad2 − c3} 〈bd, bc, b2, ad2〉 〈b, ad〉
{c3 − ad2, bd− c2, bc− ad, b2 − ac} 〈c3, bd, bc, b2〉 〈c, b〉
{c2 − bd, ad− bc, ac− b2} 〈c2, ad, ac〉 〈c, ad〉
{c2 − bd, bc− ad, ac− b2, a2d− b3} 〈c2, bc, ac, a2d〉 〈c, ad〉
{c2 − bd, bc− ad, b3 − a2d, ac− b2} 〈c2, bc, b3, ac〉 〈c, b〉
{c2 − bd, bc− ad, b2 − ac} 〈c2, bc, b2〉 〈c, b〉

The Gröbner fan is shown in Figure 17. We see that there are 4 different
radical ideals

√

in≺′(IA). According to Theorem 7.4.1 there are 4 different
regular triangulations on the columns of A. The lifts inducing these are shown
in Figure 18. The simplicial complexes for these triangulations are:

• {{1, 2}, {2, 4}, {1}, {2}, {4}, ∅}

• {{1, 3}, {3, 4}, {1}, {3}, {4}, ∅}

• {{1, 2}, {2, 3}, {3, 4}, {1}, {2}, {3}, {4}, ∅}

• {{1, 4}, {1}, {4}, ∅}.

We check that each of these have a Stanley-Reisner ideal equal to one of the
radicals listed in the right column of the table above.

The example leads us to the following definition.

Definition 7.4.4 Let A ∈ Zd×n be a matrix with a positive vector in its row
space. Let M be a monomial ideal which is the radical of an initial ideal of
IA. A secondary cone of A is the union of all Gröbner cones C≺(IA) with
√

in≺(IA) = M . The collection all secondary cones (and their faces) is the
secondary fan of A.

Usually people define the secondary fan is terms of triangulations and not in
terms of radicals and initial ideals. We end with presenting the following theo-
rem without a proof.
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Figure 17: The Gröbner fan in Example 7.4.3 is 4-dimensional so we cannot
draw it. Instead we draw its intersection with a triangle. The triangle intersects
all 8 full-dimensional Gröbner cones. The triangles whose initial ideals have
the same radical are next to each other. The colors indicate how the cones are
grouped according to radical.

Figure 18: The lifts which induce the four triangulations of the vector configu-
ration in Example 7.4.3.

Theorem 7.4.5 The secondary fan of a matrix A ∈ Zd×n is a polyhedral fan.
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8 A brief introduction to tropical geometry

The tropical semi-ring R := (R,⊕,⊙) consists of the real numbers with two
operations: tropical plus ⊕ and tropical times ⊙ where:

x⊕ y := max(x, y) and x⊙ y := x+ y

This is almost a ring in the sense that for all x, y, z ∈ R:

x⊙ (y ⊕ z) = x⊙ y ⊕ x⊙ z

Moreover, 0 is the neutral element for ⊙ and we could include −∞ in R to get
a neutral element for ⊕. However, there can be no (tropical) additive inverses
since for example x⊕ 5 = −∞ has no solution.

Tropical polynomial functions are piecewise linear. Hence their graphs be-
come polyhedral complexes as the following example shows.

Example 8.0.6 Let p = 2⊕ 1⊙ x⊕ (−1)⊙ x⊙ x. Figure 19 shows the graph
of p(x) = max(2, x + 1, 2x− 1).

We wish to define the “zero set” or “roots” of a tropical polynomial. To make a
quadratic polynomial (with a constant term) have two roots (with multiplicity),
the right thing to do, is to define the zero set to be the set of point where the
maximum is attained at least twice. In our example the roots are 1 and 2.

The amazing fact is that a lot of properties are preserved when studying the
tropical semi-ring rather than a field such as (R,+, ·) or (C,+, ·). We will see
a few such properties in the following and see how tropical geometry is closely
related to the topics of this course.

8.1 Tropical hypersurfaces

Let’s now consider a tropical polynomial f in n variables x1, . . . , xn. We define
its tropical hypersurface T (f) to be the set of x ∈ Rn such that the maximum
in the expression f(x) is attained at least twice. The tropical hypersurface can
also be thought of as a polyhedral complex.

1

1

Figure 19: The graph of p(x) = max(2, x + 1, 2x− 1) in Example 8.0.6
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Example 8.1.1 Consider the tropical polynomial

f(x, y) = (−1)⊕ (0)⊙ x⊕ (−1)⊙ x⊙ x⊕ (−1)⊙ y ⊕ (−1)⊙ x⊙ y.

Its tropical hypersurface is shown in Figure 20. In particular the maximum is
attained three times at each of the three points (−1, 0), (0, 1) and (1, 1).

It is interesting to compare Figure 20 to Figure 15. For fixed support supp(f),
the combinatorial types of tropical hypersurfaces that are defined as the coef-
ficients vary are exactly indexed by the cones of a secondary fan.

8.2 Enumerative geometry

Since the tropical hypersurface of Example 8.1.1 has dimension 1 it is also called
a tropical curve. Other examples of tropical curves are the tropical lines which
in the plane are tropical hypersurfaces defined by polynomials of the form

a⊙ x⊕ b⊙ y ⊕ c

where a, b, c ∈ R. A tropical line consists of three halflines meeting in a point
and going off in directions north-east, west and south. As the coefficients a, b, c
vary, the tropical line is translated around in the plane.

Two generic tropical curves intersect in exactly one point as shown in Fig-
ure 21. Moreover, given two generic points in the plane, exactly one tropical
line passes through them. These statements do not hold for all lines/points.

Another surprising fact is that Bezout’s Theorem holds tropically. If a
tropical curve of degree m and a tropical curve of degree n in the plane intersect
in more than mn points then they must intersect in infinitely many points.
Indeed, the tropical curve of degree 2 in Figure 20 intersects a tropical line in
either 1, 2 or infinitely many points.

Finding tropical counts such as mn above and more complicated counts is
the topic of enumerative tropical geometry. Many of these counts translate to
the classical setting where (R,+, ·) or (C,+, ·) are considered.

8.3 Tropical varieties

The situation is slightly simpler if all coefficients are 0, which is OK tropically!
Then the tropical hypersurface of a polynomial f is the union of the n − 1

Figure 20: The tropical hypersurface of Example 8.1.1.
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Figure 21: Two tropical lines intersecting in a point. A tropical line passing
through two given points.

dimensional cones in the normal fan of the Newton polytope of f . Another way
to say this is that ω ∈ Rn is in T (f) if and only if inω(f) is not a single term.

Since we are working with tropical polynomials we did not in fact define
their initial forms. However, in tropical geometry, it is still fruitful to study
polynomial ideals of usual polynomial rings. We make the following definition.

Definition 8.3.1 Let I ⊆ k[x1, . . . , xn] be a polynomial ideal. We define the
tropical variety of I to be

T (I) := {ω ∈ Rn : inω(I) contains no monomial}.
This set turns out to be closed. If I is homogeneous the cones of the Gröbner
fan of I index all initial ideals of I. Therefore T (I) is the support of a subfan
of the Gröbner fan. This subfan we will also call the tropical variety of I.

Essentially we know how to compute Gröbner fans using the Gröbner walk.
Therefore, we could in theory find all Gröbner cones of I. For each Gröbner
cone we could check if inω(I) contains a monomial. That would give us a way
to compute T (I) as a polyhedral fan. One way to check if inω(I) contains a
monomial is by computing the saturation (inω(I) : x1 · · ·x∞n ) and checking if it
is 〈1〉.

Example 8.3.2 Let A ∈ C2×5 be a matrix with generic (or random) entries.
Let p12, . . . , p45 denote the ten 2 × 2 subdeterminants. Notice that p12p34 −
p13p24 + p14p23 = 0. Let I2,5 ⊆ C[p12, . . . , p45] denote the ideal generated by all
such relations. The tropical Grassmannian2,5 is the tropical variety T (I2,5).
This tropical variety is a polyhedral fan in R10. Using the method described
above it is possible to compute that T (I2,5) has a 5-dimensional lineality, ten
6-dimensional cones and fifteen 7-dimensional cones. (Analogously to classical
Grassmannians, the points of T (I2,5) define tropical linear subspaces of R5.)

We started this subsection by setting all coefficients equal to 0 to make trop-
ical geometry match the Gröbner basis theory. Another approach is to in-
troduce term orderings which do not only compare exponent vectors but also
coefficients. That leads to a generalized notion of Gröbner bases which is bet-
ter suited for tropical geometry. That and much much more is explained in
the upcoming book by Diane Maclagan and Bernd Sturmfels:“Introduction to
Tropical Geometry” http://homepages.warwick.ac.uk/staff/D.Maclagan/

papers/TropicalBook.html
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A Exercises

A.1 First sheet

Choose 4 of the following exercises and hand in solutions by February 5th
(Wednesday).

1. Let F ⊆ k[x1, . . . , xn]. Recall that we defined 〈F 〉 := {∑m
i=1 gifi : m ∈

N ∧ gi ∈ k[x1, . . . , xn] ∧ fi ∈ F}. Prove that 〈F 〉 is an ideal. Let I ⊆
k[x1, . . . , xn] be an ideal. Prove that F ⊆ I implies 〈F 〉 ⊆ I.
We conclude that 〈F 〉 is the (unique) smallest ideal containing F .

2. Prove that I := 〈2x3y − 3x5y2, xy2, 5x6y + x9, x4y2〉 ⊆ Q[x, y] is a mono-
mial ideal. Draw its staircase diagram and find the unique minimal mono-
mial generating set for I.

3. Let f1 := x2 + y2 − 1 and f2 = x + y − 1. Prove that {f1, f2} is a min-
imal generating set for the ideal I := 〈f1, f2〉 ⊆ C[x, y]. Find a different
minimal generating set for I.
(Hint: To show that 〈f1, f2〉 6= 〈f2〉 you can for example find a point in
V (〈f2〉) which is not in V (〈f1, f2〉).)

4. Let I ⊆ k[x1, . . . , xn] be a monomial ideal and let f ∈ I. Show that every
term of f is in I.

5. Let f = x3 + y3 + z3 + xyz ∈ k[x, y, z]. Draw the Newton polytope of
f . Does there exist a vector ω ∈ R3 such that inω(f) = xyz? Does there
exist a term order ≺ such that in≺(f) = xyz?

6. Let n = 1. Prove that there is only one term ordering on k[x1].

7. Let ω ∈ Rn
≥0. Let � be some term order on k[x1, . . . , xn]. We define the

relation �ω as follows: xu �ω xv ⇔ ω ·u < ω · v∨ (ω ·u = ω · v∧xu � xv).
Prove that �ω is a term order.

8. Let n = 2. Use the exercise above to construct infinitely (or even un-
countably) many different term orderings on k[x1, . . . , xn].

9. In this exercise we prove Lemma 1.4.3. Let ≺ be a term ordering, ω ∈ Rn

and f, g ∈ k[x1, . . . , xn].

• Prove that the ring k[x1, . . . , xn] is an integral domain and if f 6=
0 6= g then in≺(fg) = in≺(f)in≺(g).

• Using that k[x1, . . . , xn] is an integral domain, prove that inω(fg) =
inω(f)inω(g).

10. Prove that xv|xu if and only if ∀i : vi ≤ ui. Prove that ifM ⊆ k[x1, . . . , xn]
is a set of monomials and xu ∈ 〈M〉 then there exists xv ∈ M such that
xv|xu. Let I ⊆ k[x1, . . . , xn] be an ideal, ≺ a term order and xu ∈ in≺(I).
Prove that there exists f ∈ I such that xu = in≺(f).
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A.2 Second sheet

Choose 3 of the following exercises and hand in solutions by February 19th
(Wednesday).

1. How is Algorithm 1.5.1 different from [11, Algorithm 1.3.4] in [11]? Do
the two algorithms produce the same remainder? Do they produce the
same remainder if {f1, . . . , fs} is a Gröbner basis?

2. Using one of the free computer algebra systems Singular or Macaulay2 (or
Risa-Asir, or CoCoA, or SAGE) compute a Gröbner basis for the ideal:

I := 〈x3+5xyz+xy+ y2+ z, y3+4xz−x2+ y, xz− yx+ z2〉 ⊆ Q[x, y, z]

Both Singular and Macaulay2 are installed on the IMFmachines (orc05,...)
and are invoked by running the commands “Singular” or “M2” in a
shell/terminal window.

3. Let n = 1 and f, g ∈ k[x] \ {0}. We already saw on the last sheet that
there is a unique term ordering on k[x]. Prove that the reduced Gröbner
basis of the ideal 〈f, g〉 has just a single element h ∈ k[x]. Prove that h|f
and h|g. Prove that if p ∈ k[x] with p|f and p|g then p|h.
(We call h the greatest common divisor of f and g. Usually it is computed
by the Euclidean Algorithm for polynomials. This exercise shows that
Buchberger’s Algorithm is a generalisation of the Euclidean Algorithm.)

4. Using a computer algebra system, write a procedure/function which given
a polynomial f ∈ Q[x1, . . . , xn] and vector ω ∈ Zn computes the initial
form inω(f).

5. Let I = 〈x3 − y2 + 1, x4 − xy + 2x + 2〉 be an ideal in Q[x, y, z]. Prove,
for example using a computer algebra system, that [xy2 + x] 6= [xy + 5]
holds in the quotient ring Q[x, y, z]/I.

We let Z/7Z be the field with 7 elements. Let J = 〈x3 − y2 + 1, x4 −
xy+2x+2〉 be an ideal in the polynomial ring (Z/7Z)[x, y, z]. Prove that
[xy2 + x] = [xy + 5] holds in the quotient ring (Z/7Z)[x, y, z]/J .

6. Using Lemma 1.7.6, make a clever choice of ≺ and find a Gröbner basis
of the ideal in Exercise 2 with respect to ≺ by hand. (Hint: Exercise 7
on the first sheet is useful.)

7. Let ≺ be a term ordering and f ∈ k[x1, . . . , xn] \ {0}. Use Lemma 1.4.3
to prove that for I := 〈f〉 we have in≺(I) = 〈in≺(f)〉. Use this to prove
that {f} is a Gröbner basis for I with respect to ≺.

8. Prove that for any term ordering ≺ and any f ∈ k[x1, . . . , xn] \ {0} we
have S≺(f, f) = 0. Use Theorem 1.7.2 or Algorithm 1.7.3 to prove that
{f} is Gröbner basis for I := 〈f〉 with respect to ≺.
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A.3 Third sheet

Do three of the exercises below. Hand in solutions by March 5th.

1. Solve the system
9z2 − 17z + 2y2 = 0

xy2 − 9x+ 5xz = 0

x2 − z2 + 4x− 2xz = 0

over C using Gröbner bases (and a computer algebra system).

2. Let k be a field. Let p1, p2 ∈ kn with p1 6= p2. Prove that there exists
a polynomial f ∈ k[x1, . . . , xn] such that f(p1) 6= f(p2). Prove that
there exists g ∈ k[x1, . . . , xn] such that g(p1) = 1 and g(p2) = 0. Let
q1, . . . , qm ∈ kn be all different. Prove that there exists h ∈ k[x1, . . . , xn]
such that h(q1) = 1 and h(qi) = 0 for all i 6= 1.

3. Let I = 〈y5−y2+z,−x3+y6−y3−1, xy−1, x4+x+y2−y5〉 ⊆ C[x, y, z]
be an ideal. Choose a term ordering ≺. Compute the initial ideal in≺(I).
Find std≺(I). Use the proof of Corollary 1.8.6 to give an upper bound on
the number of points in V (I) ⊆ C3.

4. Compute a lattice basis of the lattice kernel ker(A) ∩ Z4 for the matrix

A =

[

1 1 1 1
0 1 2 3

]

.

Complete the basis to a lattice basis of Z4.

5. Compute the reduced row echelon form of the following matrix over Q:





1 1 1 1
1 2 3 4
4 7 10 13



 .

What is the reduced lexicographic Gröbner basis of 〈x + y + z − 1, x +
2y + 3z − 4, 4x+ 7y + 10z − 13〉 ⊆ Q[x, y, z]?

6. Without using Section 2.1 (other than possibly Theorem 2.1.2) prove that
if the groups Zn and Zm are isomorphic then n = m. This shows that
the notion of rank is well-defined in Definition 2.1.1. (Hint: linear algebra
over R, or observe that the proof of Theorem 2.1.2 does not use the notion
of rank, and apply it.)

7. Can every term ordering ≺ on monomials in k[x1, . . . , xn] be represented
by a matrix A ∈ Qd×n?

8. Prove Lemma 2.2.4 without using the trigonometric functions Arg, sin
and cos.
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B Suggested projects

The most difficult projects have been marked with a *.

Gröbner bases over Z Buchberger’s Algorithm is a generalization of Gauss
Elimination. In Section 2.1 we saw that row reduction can be done
over the integers. Similarly Buchberger’s Algorithm can be improved
to Z[x1, . . . , xn]. See [2, Chapter 10.1].

Hilbert functions What is the Hilbert function of a homogeneous ideal? Why
is it a polynomial for large degree? What is the Hilbert series?

Hilbert driven Buchberger How is it an advantage to know the Hilbert
function when computing a Gröbner basis?

Gröbner basis conversion FGLM An alternative to the Gröbner walk for
changing a Gröbner basis from one ordering to another is the FGLM
procedure. See [6] and [3, page 49-56].

Computing the ideal of a finite set of points How does one compute the
ideal of polynomials vanishing on a finite set of points?

Tropical geometry What is tropical geometry, and how does in relate to the
Gröbner fan?

LLL reduction Sometimes a “small” lattice basis is desirable. Such basis
can be computed with the Lenstra Lenstra Lovasz algorithm. One ap-
plication: I have chosen a polynomial f ∈ C[x, y, z] of degree 2 with
small coefficients defining a hypersurface V (f). The approximate point
(−1.85395720454315454,−0.957346754834254434, 0.74075744188757582084)
is on the variety. Which polynomial did I choose?

Short rational functions* We have seen in Example ?? that a reduced Gröbner
basis for a toric ideal IA can easily be exponential in size of the bit encod-
ing of A - even when the dimensions of the matrix are fixed. In the paper
[5] the authors claim that Gröbner bases for toric ideals can be computed
in polynomial time for fixed dimension. What do they mean?

Eigenvalues or Sturm sequences The first step of solving a system of poly-
nomial equations is to compute a Gröbner basis. If V (I) ⊆ Cn is a finite
set then the next step is to compute the eigenvalues of the companion
matrix. If real solutions are required then Sturm sequences are a useful
tool. Polynomial system solving using eigenvalues is the topic of [3, page
56-69]. Solving polynomial systems over the reals is the topic of [3, page
69-76]. The last exercise on page 76 is to prove Sturm’s theorem.

Local orderings* A local ordering is a term ordering where 1 is not necessar-
ily the smallest monomial. Gröbner bases for these orderings are called
standard bases. They are generators for ideals in localized polynomial
rings. Their construction relies on the more complicated “normal form
algorithm” by Mora.
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Gröbner bases for modules* An ideal I ⊆ k[x1, . . . , xn] is a k[x1, . . . , xn]-
module. Gröbner bases can be defined and computed for submodules of
the free module (k[x1, . . . , xn])

m. See [1, page 140-152].

Primary decomposition of monomial ideals How can one read off a pri-
mary decomposition of a staircase diagram?

Generic initial ideals* What is a generic initial ideal? How do we compute
it? What is the generic Gröbner fan?

A vector interpretation of Buchberger’s algorithm for toric ideals We
have already seen that Gröbner bases of toric ideal are generated by bi-
nomials. It is is possible to describe Buchberger’s algorithm purely using
vectors in Zn.

Gröbner bases with p-adic valuation* Fix a prime p. The p-adic valua-
tion on Q can be used in the definition of Gröbner bases.

Comparing algorithms for computing toric ideals We have already seen
one algorithm for computing for computing toric ideals. Describe the
DiBiase-Urbanke Algorithm, implement it (in Singular?), and compare
running times.

Gebauer Möller Criteria* What is the Gebauer Möller criteria for elimi-
nating S-polynomials in Buchberger’s algorithm, and why does it work?

The integer programming gap* How do we use Gröbner bases to estimate
the difference between the optimal value for a in integer programming
problem and its LP-relaxation?

Universal Gröbner bases Given a set of polynomials, how do we use Newton
polytopes to check if it is a Gröbner basis with respect to any term order?
How do we check if there exists a term ordering which it is a Gröbner
basis with respect to?

Hilbert’s Nullstellensatz We have already used Hilbert’s Nullstellensatz when
solving polynomial systems. But how does the proof go?
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C Notation and conventions

• N = {0, 1, 2, . . . }.

• xu = xu1
1 xu2

2 · · ·xun
n for a vector u ∈ Zn.

• Zd×n - the set of d× n matrices with entries in Z.

• Ai· - the ith row of a matrix A.

• A·j - the jth column of a matrix A.

• R≥0 = {x ∈ R : x ≥ 0}.

• For U ⊆ Rn the orthogonal complement U⊥ := {x ∈ Rn : ∀y ∈ U : x · y =
0}.

• G≺(I) is the reduced Gröbner basis of I w.r.t. ≺.

• For u ∈ Zn we define u+ ∈ Nn with u+i := max(ui, 0).

• For u ∈ Zn we define u− ∈ Nn with u−i := max(−ui, 0).

• For u, v ∈ Zn define u∧ v and u∨ v as follows: (u∧ v)i := min(ui, vi) and
(u ∨ v)i := max(ui, vi).

• pu := xu
+ − xu

−

We use the following conventions. If we apply an associative operation to zero
operands we get the neutral element for that operation. For example:

• If we are summing the real numbers in a finite set B, and B happens to
be empty, then

∑

a∈B a = 0, the neutral element for addition in R.

• If we make a union of 0 sets, then we get the empty set
⋃

a∈∅ a = ∅.

• Let B be a set of subsets of Rn, then
⋂

a∈B a is Rn if B = ∅.

There is good reason for such a convention. We all remember that a d-dimensional
linear subspace U ⊆ Rn has a basis with d elements. This means that the sub-
space {0} has the empty set as a basis. The set {0} would not work as a basis
because this set is linearly dependent.

Similarly, in the case of ideals in k[x1, . . . , xn], we have 〈∅〉 := {∑m
i=1 gifi :

m ∈ N ∧ gi ∈ k[x1, . . . , xn] ∧ fi ∈ ∅} = {0} because m = 0 is the only choice
(otherwise we cannot pick fi).
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D Software introductions

If you are familiar with the text editor Emacs, it is a good idea run the command
line software from there. After having started Emacs, hold down the META
key (ESC or ALT) and press “x”. Now type “shell” and press ENTER. You
now have a working shell with the advantage that you can edit the buffer as any
other Emacs buffer and press CTRL-UP to repeat you input. Some systems
such as Singular already has this feature built in.

D.1 Singular

Singular is a free Computeralgebra system for computing with polynomials.
Singular is specialized in the area of singularity theory and therefore handles
local rings and local term orderings which was not covered in this course. The
core Singular developer team is located at the Technical University of Kaiser-
slautern, Germany. Contributors are spread over the world.

We start Singular by typing “Singular” in the shell. To illustrate how the
software works we compute the Gröbner basis of Example 1.6.4 by typing

ring r=0,(x,y),dp;

ideal I=x2+y2+x2y, x2+xy+x2y;

std(I);

and get the result:

_[1]=xy-y2

_[2]=y3+x2+y2

_[3]=x3+x2+y2

The first line of our input sets up the polynomial ring r. We provide three
kinds of information: the characteristic of the ring (we just choose 0 for Q), the
variable names, and finally we specify the term order “dp” which means the
graded reverse lexicographic ordering. The second line specifies an ideal I by
listing a set of generators. In the third line we compute a Gröbner basis of I
using the command “std”.

If we want to make sure that Singular computes the reduced Gröbner basis,
we need to run the command:

option(redSB);

before computing a Gröbner basis.
To compute the remainder of a polynomial by division with the Gröbner

basis, we first store the Gröbner basis and use the command “reduce”:

ideal G=std(I);

reduce(xy3+1,G);

2x2+2y2+1

Other term orders can be chosen:
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ring s=0,(x,y),wp(1,3);

ring t=0,(x,y),lp;

Here the first ring uses a term ordering induced by a vector (and tie-broken
reverse lexicographically). The second ring uses the lexicographic ordering.

From our viewpoint it is unnatural to specify the term ordering at the same
time as the polynomial ring. To Singular, however, it is important, because if
the ordering is not “global” (meaning 1 is not smallest), then Singular does not
complain but computes in a localization of the usual polynomial ring.

As the reader might have noticed, Singular uses the C programming lan-
guage syntax and does indeed contain a complete programming language. More
information can be found at the Singular webpage http://www.singular.

uni-kl.de and the online manual.

D.2 Polymake

Polymake is a free software system for computing with polyhedra. Often Poly-
make does not do the computations itself, but hands over the data to different
kinds of specialized software packages. Polymake provides a uniform, transpar-
ent interface to these packages. Polymake is developed in Berlin and Darmstadt
in Germany. It does not run on MS-Windows. But one can use the online in-
terface http://polymake.org/doku.php/boxdoc

In the following we do a little session with the Polymake type Polytope. The
name of the data type “Polytope” is misleading: A Polymake Polytope can be
unbounded. We construct a polyhedron in R3 generated by points and rays.

polytope > $p=new Polytope(POINTS=>[[0,2,2,4],[1,1,1,0],[1,1,0,1]]);

The first coordinate is special: 1 means a point used for the convex hull in the
statement of Theorem 3.2.6, while 0 means a cone generator of the construction.

We make another polyhedron by specifying the defining A matrix and b
vector. In our notation INEQUALITIES=

[

b −A
]

and we input the rows:

polytope > $q=new Polytope(INEQUALITIES=>[[2,-3,1,1],[-2,3,-1,-1],

[1,2,4,-4],[1,-4,4,2],[10,1,1,1]]);

We can now compute the Minkowski sum.

polytope > $r=minkowski_sum($p,$q);

We can ask for the rays and vertices:

polytope > print $r->VERTICES;

1 13/6 1/3 13/6

1 -1 7/2 -21/2

0 1 1 2

0 0 1 -1

And ask for a minimal set of defining inequalities and equations:
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polytope > print $r->FACETS;

1 1 0 0

1 0 0 0

11/6 -1 1 0

-5/2 1 1 0

polytope > print $r->LINEAR_SPAN;

4 -3 1 1

Polymake uses the PERL programming language, allowing users to extend the
system with whatever functions they like.

D.3 Gfan

Gfan is a free software system for computing Gröbner fans. On the Gfan web-
page http://home.imf.au.dk/jensen/software/gfan/gfan.html the software
and a manual can be found. The software is also installed on the IMF machines
(orc05,...). After logging in, you can type the following

/home/jensen/bin/gfan _bases

followed by

Q[x,y,z]

{x^5 + z^2 + y^3 - 1, y^2 + z + x^2 - 1, z^3 + y^5 + x^6 - 1}

to compute all 360 reduced Gröbner bases of the ideal in Example 4.0.22. If
you want to compute the Gröbner fan instead, type

/home/jensen/bin/gfan _groebnerfan

followed by

Q[x,y,z]

{x^5 + z^2 + y^3 - 1, y^2 + z + x^2 - 1, z^3 + y^5 + x^6 - 1}

. The output explains how the rays of the fan are combined to form all cones.
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E Exam topics

At the exam you will be assigned one of the 6 topics below at random. You will
have 25 minutes to prepare (alone) after having drawn your topic. After this
the 20 minutes exam will start. You should present your topic for about 12-14
minutes. It is good to include (a sketch of) a proof, but definitions and examples
are at least as important. You should be prepared to also say something about
your project and answer questions about your project and other topics.

Robbiano’s characterization of term orderings Suggested things to ex-
plain: How a matrix represents a term ordering. Example. What Rob-
biano’s theorem says (Theorem 2.3.5). Proof idea: extend to Laurent
monomials, consider convex set X not containing 0, how we get the first
row of the matrix A by applying Lemma 2.2.5.

Fourier-Motzkin elimination and its consequences Suggested thing to ex-
plain: What a polyhedron is. How we compute the projection of a poly-
hedron using the Fourier-Motzkin algorithm (Algorithm 3.1.3). Maybe
very small example. Explain one of the applications: Theorem 3.1.6,
Theorem 3.1.10 or Proposition 3.1.12.

The Gröbner fan of an ideal Suggested things to explain: (What a fan is.)
What the notation C≺(I) means. Definition 4.3.1. There are many dif-
ferent things one could explain now. But there is little time, so one needs
to choose. Here is something to choose from:

• The set C≺(I) is a polyhedral cone. This follows from Lemma 4.2.1.

• The Gröbner walk. What the idea of Section 5.9 is.

• There are only finitely many initial ideals in≺(I) of an ideal I and
hence only finitely many cones in the Gröbner fan (Proposition 4.1.1).

Lattice ideals Suggested things to explain: What a lattice is. What a gen-
erating set for a lattice is. What a lattice ideal is. How one computes
a generating set for the lattice ideal if a generating set for the lattice is
known (Proposition 6.2.8). What the notation (I : (x1 · · ·xn)∞) means.
What Proposition 6.1.3 says. Maybe: Why any reduced Gröbner basis
of a lattice ideal consists of binomials. (Notice lattices were defined in
Section 2.1 and lattice ideals in Section 6.2.)

Toric ideals and integer programming Suggested things to explain: What
the toric ideal of a matrix A ∈ Nd×n is. Why it is a lattice ideal. What
Fiber(A) is. What Fiber≺(A) is. Why it has no cycles and a unique sink
Proposition 6.4.7. Why this graph “solves” the minimization problem in
(4), page 73 (Lemma 6.4.8). Example.

Regular triangulations and secondary fans Suggested things to explain:
How a (generic) vector ω defines a triangulation of a vector configuration
A. An example. What the secondary fan is. What a Stanley-Reisner
ideal of an abstract simplicial complex is. What Sturmfels’ Theorem
says. What the idea of the proof is.
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