
Traversing Symmetric Polyhedral Fans

Anders Nedergaard Jensen⋆

Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstraße 3-5,
D-37073 Göttingen, Germany

Abstract. We propose an algorithm for computing the facets of a pure
connected polyhedral fan up to symmetry. The fan is represented by an
oracle. With suitable implementations of the oracle the same algorithm
can be used for computing secondary fans, Gröbner fans, Tropical va-
rieties and Minkowski sums up to symmetry. The algorithm has been
implemented in the software Gfan.

Keywords: Polyhedral fans, tropical geometry, algorithms, symmetry

1 Introduction

Polyhedral fans arise naturally in convex geometry, with the prime example
being secondary fans whose cones index all combinatorial types of polyhedra
with a fixed set of normals. In algebraic geometry they give rise to toric varieties
and play the central role in the evolving field of tropical geometry. This paper
is concerned with the problem of computing polyhedral fans up to symmetry.

Exploiting symmetries in computational geometry is not a new idea. Indeed
the method we present here specializes to the well-known adjacency decomposi-
tion method when the fan to be traversed is full-dimensional; see [3]. In the case
of secondary fans, our work can be viewed as a refinement of [11].

We use the following example as a motivation for our approach.

Example 1. Consider the family of curves in C2 each defined by a polynomial

f = a + bx + cx2 + dx2y + ex2y2 + gxy2 + hy2 + iy + jxy ∈ C[x, y].

A point on a curve is called a cusp if

∂f

∂x
=

∂f

∂y
= 0 and

∂2f

∂x∂y

∂2f

∂y∂x
−

∂2f

∂x∂x

∂2f

∂y∂y
= 0

in that point. Eliminating variables x and y we get an ideal Icusp defining the
subfamily of curves with a cusp. We will be interested in the tropical variety
T (Icusp) which is a polyhedral fan. The reduced Gröbner basis for Icusp with
respect to the term order given by the point in the support of T (Icusp)

(304,−158,−152,−206, 388,−248,−146,−128, 346) ∈ R9, (1)

tie-broken reverse lexicographically, has 18608 terms in 23 polynomials.

⋆ Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft
(DFG)) through the Institutional Strategy of the University of Göttingen.



2 A. N. Jensen

In [2] it was suggested that the Gröbner cones are represented by Gröbner
bases when computing tropical varieties. The example shows that for practical
purposes it is important not to store all these bases in memory. The algorithm
we present keeps only one such algebraic representation stored at a time.

For clarity, the fan will be given to us by an oracle. Our main contributions
are a description of a symmetry exploiting traversal algorithm with a minimal
number of oracle calls, a practical method for checking orbit membership of
cones and finally a description of an oracle implementation for the restriction of
a Gröbner fan to a lower-dimensional polyhedral cone.

We give a few more details on the implementation in the software Gfan [10]
and end the paper by computing the fan in Example 1 using this software.

2 Definitions and Notation

By a polyhedral cone C ⊆ Rn we mean a finite intersection of closed halfspaces
in Rn, or, equivalently, the non-negative span cone(v1, . . . , vm) of a collection of
vectors {v1, . . . , vm} ⊆ Rn. We use rel int(C) to denote the relative interior of
C. The inclusion largest linear subspace contained in C is called the lineality
space of C. It equals C ∩−C. For an ω ∈ Rn we let faceω(C) denote the face of
C at which 〈ω, ·〉 is maximized and use the same notation for polytopes. A finite
collection F of cones is called a polyhedral fan if

– C ∈ F implies that every face of C is in F , and
– C, C′ ∈ F implies that C ∩ C′ is a face of C.

In particular, the cones in a fan must all have the same common lineality space.
An example of a fan is the set of faces faces(C) of a cone C. The common
refinement A ∧ B := {a ∩ b : (a, b) ∈ A × B} of two fans A and B is a fan. The
f-vector of F lists the number of cones of each dimension, starting with a 1 for
the lineality space. The support supp(F) of a fan F is the union of its cones. We
will use the untraditional word ray to denote a cone with exactly two faces (the
cone and its lineality space). For a rational ray C the intersection (C∩−C)⊥∩C

is a one-dimensional half-line which has a unique first non-zero lattice point in
Zn. We call this the primitive vector of C and denote it prim(C). Let the link
of a cone C at a point v ∈ C be

linkv(C) = {u ∈ Rn : ∃δ ∈ R>0 : ∀ε ∈ (0, δ) : v + εu ∈ C},

and define the link of a fan F at a point v in the support of F to be the fan

linkv(F) = {linkv(C)|v ∈ C ∈ F}.

Since any two points in the relative interior of a cone R ∈ F will give the same
link, we will also denote the link linkR(F). In the special case where R is a facet
of C, meaning that the dimension of R is one smaller than the dimension of C,
the link linkR(C) is a ray and we also denote it by ray(R, C).



Traversing Symmetric Polyhedral Fans 3

An inclusion maximal cone in a fan is called a facet. We shall be mainly
interested in pure fans which are fans whose facets all have the same dimension
d. A cone of dimension d − 1 in such a fan is called a ridge. A ridge path in F
is a sequence of facets F1, . . . , Fs such that Fi ∩ Fi+1 is a ridge. A pure fan is
connected in codimension one if any two facets are connected by a ridge path.
The symmetric group Sn acts on Rn by permuting coordinates. This action
extents to cones and fans in Rn. A subgroup G ⊆ Sn is said to be a symmetry
group of a fan F if it is contained in the stabilizer of F .

2.1 Gröbner fans and tropical varieties

We consider the polynomial ring k[x1, . . . , xn] over a field k. For a vector ω ∈ Rn,
the initial form inω(f) of a polynomial

∑
i cix

ai with ci ∈ k \ {0} and ai ∈ Nn

is defined as the sum of all terms cix
ai such that 〈ω, ai〉 is maximal. We define

the initial ideal of I as inω(I) := 〈inω(f) : f ∈ I〉. Now, fix an ideal I. Two
vectors u, v ∈ Rn are equivalent if inu(I) = inv(I). The closure of an equivalence
class containing v ∈ Rn

>0 is a polyhedral cone Cv(I) and the collection of all
cones and their faces is the Gröbner fan Σ(I) of I. The maximal cones of Σ(I)
are in bijection with the marked reduced Gröbner bases of I. They are reduced
Gröbner bases where the initial term of each polynomial has been distinguished
– it has been marked. Given a term order ≺ we use the notation G≺(I) for
the marked reduced Gröbner basis with respect to ≺ and C≺(I) for its cone. If
I is homogeneous, then the fan is complete and we define the tropical variety
T (I) of I to be the following subfan of the Gröbner fan Σ(I): T (I) := {Cv(I) :
inv(I) contains no monomial}. See [2] and [8] for details.

3 The traversal algorithm

In this section we present an algorithm for traversing the maximal cones of a
pure d-dimensional, codimension-one-connected fan F . Explaining the algorithm
in great detail makes it easy for us to be precise in Section 3.1 where we will
modify the algorithm to exploit symmetry. The fan F is known to the algorithm
only through an oracle. The oracle allows two main operations:

– Given a maximal cone C ∈ F and a facet R of C we may ask for linkR(F).
The link is a list of rays Olink

C (R).
– Given a maximal cone C, a facet R of C and a ray v ∈ linkR(F) we may ask

for the cone O
change
C (R, v) in F having link v at R.

The subscript in our oracle notation needs more explanation. We do not allow
oracle calls in arbitrary order but think of the oracle as having an internal state
being a facet C ∈ F and additional information. We may only ask for Olink

C (R)

and O
change
C (R, v) when the oracle is in state C. The oracle call O

change
C (R, v)

changes the state to C′, where C′ is the returned maximal cone giving rise to v

in the link. In addition to the above calls, we are allowed to ask the oracle which
cone it is in; Ocone

C () will return C, but it will not reveal the complete state.



4 A. N. Jensen

Furthermore, we will assume that the oracle is in some state at the beginning of
the traversal.

The following example illustrates admissible oracle call sequences. It will be
a Gröbner fan to emphasize that the state may consists of non-geometric data.

Example 2. Consider the ideal I := 〈a2 + bc, b2 + ac, c2 + ab〉 ⊆ Q[a, b, c]. A
computation reveals that Σ(I) is a three-dimensional fan in R3 with f-vector
(1, 9, 9) and a 1-dimensional lineality space. The 9 rays of the fan are generated
by the lineality space and one of the vectors

(1,−1, 0), (0,−1, 1), (−1,−1, 2), (−1, 0, 1), (−1, 1, 0),

(−1, 2,−1), (0, 1,−1), (1, 0,−1), (2,−1,−1),

which are ordered cyclically. By Gröbner basis theory the nine maximal cones
are in bijection to the nine reduced Gröbner bases of I. One of these is

{c2 + ab, bc + a2, b2 + ac, a2c, a2b, a4}

corresponding to the maximal cone C1 := cone(±(1, 1, 1), (−1, 0, 1), (−1, 1, 0)).
Let R1 be the ridge cone(±(1, 1, 1), (−1, 0, 1)). An oracle representing the Gröb-
ner fan would have

Olink
C1

(R1) = {cone(±(1, 1, 1),±(−1, 0, 1), (−1, 2,−1)),

cone(±(1, 1, 1),±(−1, 0, 1), (1,−2, 1))}.

Later we shall be less strict and think of this as just a set of two vectors, but
because of scaling and the non-trivial lineality space there are several possibilities
for choosing these representatives.

Let v := cone(±(1, 1, 1),±(−1, 0, 1), (1,−2, 1)). Making the call

C2 := O
change
C1

(R1, v) = cone(±(1, 1, 1), (−1,−1, 2), (−1, 0, 1))

changes the state to C2. Now the calls Olink
C1

(R1) and O
change
C1

(R1, v) are illegal,

while Olink
C2

(R1) and O
change
C2

(R1,−v) are legal. Applying a total of nine Ochange

calls we can return to state C1.

Since the hidden state information can be huge, see Example 1, our calling
conventions for the oracle have been designed so that only one state is stored,
keeping memory consumption as low as possible. We note that reconstructing
the hidden state information from a polyhedral cone can be quite complicated.
Indeed, the Gröbner walk [5] speeds up the process of computing a Gröbner basis
with respect to a prescribed term order by making a sequence of local changes.

We cannot always, as in Example 2, think of the facets of F as being vertices
of a graph with the ridges being edges connecting them, since a ridge may connect
more than two facets if the fan is not full-dimensional. Rather we should think
of a hypergraph, in which the hyperedges connect many vertices. Traversing a
hypergraph by an exhaustive search is not more complicated than traversing a



Traversing Symmetric Polyhedral Fans 5

graph. In fact our problem translates into traversing the bipartite graph GF with
the right hand side being the facets, the left hand side being the ridges, and two
cones being connected if one is contained in the other. Having F connected in
codimension one is equivalent to GF being connected.

We recall a basic graph traversal algorithm for connected graphs:

Algorithm 1
Input: A connected graph G = (V, E), a vertex v ∈ V .
Output: All vertices V of G.

– (A, B, D) := ({v}, ∅, ∅);
– while(A 6= ∅)

• Choose u ∈ A;
• A := A \ {u};
• B := B ⊖ {{a, u} : {a, u} ∈ E};
• D := D ∪ {u};
• A := A ∪ {a : {a, u} ∈ B};

– output D;

Here S ⊖T denotes the symmetric difference (S ∪T ) \ (S ∩T ) of two sets S and
T . An invariant for the algorithm is that after each step the edge set B is the
boundary of the vertex set D. At the end D = V and B and A are empty.

We will use a depth-first approach to traverse the bipartite graph GF . This
means that the set A will work as a last-in-first-out stack. Equivalently, we may
present the above algorithm as two mutually recursive procedures, with left and
right hand side nodes being treated differently. Thus, in the algorithm below, the
set A is stored implicitly on the recursion stack while facets are written to the
output rather than stored in the set D. The set B will no longer be a collection
of sets of cones from F , but rather consist of pairs of the form (R, v), where R

is a ridge of F and v is a ray in linkR(F).

Algorithm 2
Input: An oracle O in state C0 representing a codimension 1 connected fan F .
Output: All facets of F .

– B := ∅;
– Call EnumerateFacet(C0) below;

EnumerateFacet(C)

– Output C;
– Compute the facets of C;

– T := {(R, ray(R, C)) : R is a facet of C};
– B := B ⊖ T ;
– For every pair (R, v) ∈ T

• If (R, v) ∈ B then call EnumerateRidge(R, C);



6 A. N. Jensen

EnumerateRidge(R, C)

– L := Olink
C (R);

– T := {(R, v) : v ∈ L};
– B := B ⊖ T ;
– v′ := ray(R, C);
– For pair (R, v) ∈ T

• If (R, v) ∈ B then

∗ C := O
change
C (R, v)

∗ Call EnumerateFacet(C);

∗ C := O
change
C (R, v′)

Proof. The algorithm is a direct translation of Algorithm 1 as explained above.
We note that at any time the oracle is in state C and that after calling Enu-
merateRidge, EnumerateFacet sets C to the original second argument value by
calling the oracle. This shows that the sequence of oracle calls is valid.

We measure the efficiency of a traversal strategy by the maximal number of
Olink

C (R) and O
change
C (R, v) oracle calls needed as functions of the number of

ridges and facets in the fan, respectively. An enumeration strategy is considered
optimal if these functions are minimal among all strategies.

Proposition 1. Let r be the number of ridges in F and f the number of facets.
Algorithm 2 makes r oracle calls of type Olink

C (R) which is optimal. It makes

2(f−1) oracle calls of type O
change
C (R, v). By postponing the last oracle call C :=

O
change
C (R, v′) until absolutely needed, Algorithm 2 makes at most max(2f−3, 0)

oracle calls of type O
change
C (C, v). This is optimal.

Proof. The result follows from the fact that EnumerateRidge is called once for
every ridge, and that it does two O

change
C (R, v) calls for every facet except C0.

The number of Olink
C (R) calls is optimal, since every ridge must be investigated.

We never have to bring the oracle back to the initial state at the end. This
reduces the number of oracle calls by at least one. To see that this is optimal we
consider a worst case scenario of a pure connected fan with f facets on a ridge
path and f + 1 ridges. In an unlucky case the oracle starts close to one end of
the fan, moves to the other end and is forced to go back to finish the job. This
gives 2f − 3 calls.

Whether f − 1 is the optimal number of O
change
C (C, v) calls for a particular

graph GF depends on the topology of GF and is related to the Hamiltonian
path problem. We note that f − 1 is optimal if we relax the oracle call order
restriction, but that this would increase memory usage in practice.

For practical implementations of Algorithm 2 it can be an advantage to
represent the elements in B as pairs of vectors. For example, (R, v) can be
represented by a pair of deterministically computed points in rel int(R) and
rel int(v). We will return to the choice of these vectors in the next section.



Traversing Symmetric Polyhedral Fans 7

3.1 Exploiting symmetry

In addition to the oracle, Algorithm 2 could be changed to take a subgroup G

of symmetries under which F is known to be invariant as input. Our goal would
then be to find all orbits of maximal cones F under this group action. We shall
restrict ourselves to symmetries which are coordinate permutations and assume
that G ⊆ Sn. However, this restriction will only be important when we define
p(C) later in this section (where Zn must be preserved) and for Algorithm 3.

First we define what we mean by a canonical representative for the orbit of
a pair of cones (R, v), where R is a ridge of F and v ∈ linkR(F). Fix a total
order ≺ on the set K of polyhedral cones in Rn. We define CanRep(R, v) to
be the smallest element in {(σ(R), σ(r)) : σ ∈ G}, with the ordering being the
lexicographic order on K × K with each K ordered by ≺.

We now explain how to change Algorithm 2 to compute just one facet (and
one ridge) of each orbit. To be precise we will avoid calls EnumerateRidge(R,C)
if the procedure has already been called for another ridge in the orbit of R.
Similarly, we avoid calls EnumerateFacet(C) and the two surrounding oracle
calls if the procedure has already been called for another facet in the orbit of
C. Equivalently, we traverse the bipartite quotient graph GF , where vertices are
identified if they are in the same orbit and multi-edges are regarded as single
edges.

Three kinds of changes are required:

– In both procedures of Algorithm 2 we let T consist of the canonical repre-
sentatives of the orbits of the pairs with respect to G rather than the pairs
themselves. This may make T smaller since only one element from each orbit
can be in T .

– At the two places where we check for containment of (R, v) in B, we should
instead check for containment of CanRep(R, v).

– When we recursively call EnumerateRidge after having checked that B con-
tains CanRep(R, v), we need to recover (one of) the original facet(s) of C

giving rise to R. That is we must find the σ we applied to get R in T . We
then use σ−1(R) when calling EnumerateRidge. Similarly, when we in Enu-
merateRidge have verified that CanRep(R, v) is in B, we must find the (or
one) v ∈ L giving rise to the CanRep(R, v) in T . We will use this v when
calling the oracle.

In the above description we do operations on polyhedral cones when handling
symmetries, but this is not convenient in practice. Rather, for a cone C we wish to
define a canonical, symmetry invariant relative interior point p(C). In particular,
we must have σ(p(C)) = p(σ(C)) for every σ ∈ G and cone C ⊆ Rn. Checking if
two cones of F are in the same orbit can be done by checking that their points are
in the same orbit. Even better, for a pair of ridge-facet incidences represented by
(R, v) and (R′, v′) we can check if they are the same up to symmetry by checking
if (p(R), p(v)) and (p(R), p(v)) are the same up to symmetry.

We notice that the vector p(C) :=
∑

prim(r), where r runs over all rays of
C, satisfies the above properties. However, this definition has the disadvantage



8 A. N. Jensen

that computing it requires knowing the extreme rays of C. Often C is simplicial
and this is not a problem, but in general an H-to-V conversion is needed. Al-
ternatively, we may define p(C) using analytic centers of polytopes, which can
be computed in polynomial time by numerical methods. We have no practical
experience with this approach.

3.2 Symmetry algorithms

Complexity-wise, deciding if two vectors in Zn are the same up to the action of
a group G ⊆ Sn, specified by its generators, is as hard as the graph isomorphism
problem of deciding if two graphs are the same up to permutation of their ver-
tices. Indeed asking if the edge-vertex incidence matrices of the two graphs are
the same up to row and column interchanges answers the question. The graph
isomorphism problem is not known to be in P, the class of polynomial time
solvable problems, and therefore we cannot expect the canonical representative
computation to have polynomial time complexity. We discuss how to solve the
problem in practice.

We will not address the problem of computing generators for our group G

but rather suppose that they are given. Each generator can be represented by a
permutation of the vector (1, 2, . . . , n). We start by precomputing all elements
of G and store them in a prefix tree (or a trie). A prefix tree has an integer
at each node (except the root), and it represents all vectors of integers we get
by going from the root to a leaf, picking up integers from the nodes we pass
through. Thus we will use a tree of depth n. We are seeking an algorithm with
the following specification.

Algorithm 3
Input: A subgroup G ⊆ Sn stored in a prefix tree and vectors R, v ∈ Zn.
Output: A permutation σ ∈ G such that (Rσ1

, vσ1
, . . . , Rσn

, vσn
) is lexicograph-

ically smallest.

Such an algorithm can be achieved by making a combinatorial backtracking
search over the prefix tree. At a node at level i we follow those edges leading to
vertices whose markings σi make (Rσi

, vσi
) lexicographically smallest. We keep

a vector with the optimal permutation of R and v seen so far. Using this vector
branches can be pruned if they cannot lead to an optimal permutation.

If stabilizers are small, which is often the case in our setting, and the group
fits into memory, then the method described here works well. We refer to the
field of computational group theory for other approaches, see [3] for references.

4 Oracles

Using different terminology the oracles for traversing normal fans of Minkowski
sums of polytopes, secondary fans, Gröbner fans and tropical varieties are already
present in the literature, see [6], [11],[5] and [2], respectively. The topic of this
section is slight variations of these. Due to the size limit for this paper, we only



Traversing Symmetric Polyhedral Fans 9

discuss one of these oracles in detail, while briefly mentioning other possible
variations.

We first consider the d-skeleton of the normal fan of a Minkowski sum of
polytopes P1, . . . , Ps whose vertices are given. This is a connected fan, and the
link of a ridge with relative interior point ω is the d-skeleton of the normal fan
of the Minkowski-sum of faceω(P1), . . . , faceω(Ps). Modulo the lineality space
the link is a collection of rays, which are the normals of the Minkowski sum
of the faces. This is a general behavior; the computation becomes easier at the
link – at least for s = 2, the Minkowski sum facets can be computed by a V-to-H
conversion of the convex hull conv((faceω(P1)×e1)∪· · ·∪(faceω(Ps)×es)) ⊆ Rn×
Rs, which is also known as the Cayley embedding of faceω(P1), . . . , faceω(Ps).

In the following we will explain how Gröbner fan computations can be re-
stricted to cones of Rn. It is important to note that a similar technique works
for computing slices of secondary fans. One application of this can be found in
the last paragraph of this paper.

4.1 The Gröbner fan

Recall that the maximal cones of Σ(I) are in bijection with the marked reduced
Gröbner bases {G≺(I)}≺ where ≺ runs through all term orders. Inequalities for
the Gröbner cone of G≺(I) can be read off from the exponent vectors of G≺(I).

To make a change to another cone O
change
C (R, v) through a ridge R with relative

interior point ω and normal v, we compute the Gröbner basis with respect to
the ordering given by ω + εv with ε > 0 small (tie-broken in any way).

While the ε-perturbation is easy to handle in theory and practice with matrix
term orders, the reader familiar with Gröbner bases will know that the above
description is an oversimplification. One will not compute the ω + εv Gröbner
basis from scratch, but rather use the identity

inω+εv(I) = inv(inω(I))

to construct a Gröbner basis for I from one of inω(I). As for the Minkowski sum
problem, the computation at the link becomes easier. See [5] and [8] for details.

We now explain how to restrict the Gröbner fan computation to a possibly
lower-dimensional cone D ⊆ Rn. One problem that we might face if the ideal is
not homogeneous is that Σ(I) is not complete and the usual restriction Σ(I) ∧
faces(D) is not connected in codimension one – take for example I = 〈x2

1x2 +
x1x

2
2 + 1〉 and D = {ω ∈ R2 : ω1 + ω2 ≤ 0}. There are several ways to get

around this problem. Here, to keep the exposition simple, we will assume that I

is homogeneous, and thus Σ(I) complete.

Definition 1. Let I ⊆ k[x1, . . . , xn] be an ideal and let D ⊆ Rn be a polyhedral
cone. We define the restriction Σ(I)D := Σ(I) ∧ faces(D).

The support of the restriction Σ(I)D is D.

Definition 2. A ridge R in Σ(I)D is called flippable if rel int(R) ∩ rel int(D)
is not empty.



10 A. N. Jensen

Lemma 1. The restriction Σ(I)D is a pure fan connected in codimension 1. It
is connected even if we only consider flippable ridges.

Every maximal cone in Σ(I)D is of the form C≺(I)∩D and we will represent
such cone by G≺(I). This representation is not unique. We have described how
the internal state of the oracle is stored, and will now explain how the oracle
calls can be implemented:

Cone: The cone represented by G≺(I) can be computed as the intersection
C≺(I) ∩ D.

Link: The link of a ridge has either one or two rays. One of these rays v is
already known to us as the link of C at R in the oracle call and we need to
decide if −v is in the link. To check if R is flippable, it suffices to check if a
relative interior point ω of R is in one of the facets of D.

Change: Let ω be a positive vector in the flippable ridge. A reduced Gröbner ba-
sis representing the neighbouring cone can be gotten by computing a Gröbner
basis with respect to the term order given by ω + εv, tie-broken in any way.
A more efficient way is to pass to the initial ideal inω(I) first. See [5] and [8].

We note that for a facet C ∈ Σ(I)D it is easy to recover the initial ideal
with respect to relative interior points of C. This was used in [4] for a method
to check if a given generating set of I is a tropical basis.

There is still one problem that we need to address. Namely, how we get
started, i.e. given I and D, how we compute a reduced Gröbner basis G≺(I) such
that C≺(I)∩D is maximal in Σ(I)D. The solution is an application of matrix term
orders. First we pick a vector c1 ∈ rel int((D + C0(I)) ∩ Rn

≥0) and then extend
c1 to a basis {c1, . . . , cd} of span

R
(D). Then we extend this basis to a basis

{c1, . . . , cn} of Rn. The term ordering of the matrix with rows c1, . . . , cn gives
the desired Gröbner basis. Alternatively, we consider c = c1 + εc2 + . . . + ǫn−1cn

and compute

inc(I) = incn
(incn−1

(· · · inc1
(I) · · ·))

successively. This is the initial ideal for G≺(I). To construct G≺(I) we may repeat-
edly apply the Gröbner walk lifting procedure as it was done in [2, Algorithm 9].

Having specified the oracle, we may also apply the symmetric version of the
traversal algorithm. The group G should be a symmetry group for Σ(I)D.

It is tricky to extend Definition 1 and 2 to cover the non-homogeneous case
and we shall only discuss one subtlety in this setting. Take D = Rn. In this
case, see [8], it is natural to allow only flips through facets with positive points
in their interior, since this will guarantee usage of only allowable term orders at
the ridge. Consider for example I = 〈x3 + y3 + x2y2〉 , which has a complete
Gröbner fan with a ridge outside the strictly positive orthant. A priori, this ridge
should not be considered flippable and the “flippable link” at that ridge should
only consist of one ray, even though the geometric link consists of two. The only
problem with this is that EnumerateRidge is called more than once for the same
ridge in Algorithm 2. This does not change the correctness of the algorithm.



Traversing Symmetric Polyhedral Fans 11

5 Comparison to reverse search

The memory-less reverse search method [1] can be used for traversing many
types of full-dimensional fans – including Gröbner fans, see [8]. It works by
traversing a spanning tree of the graph whose vertices are the facets and whose
edges are the ridges of the fan. Symmetry can be exploited by restricting to
a fundamental domain of the group action on Rn, but still orbits whose cones
touch the boundary of the fundamental domain may be computed more than
ones. The reverse search has the drawback that in order to decide on the local
structure of the traversal tree an O

change
C oracle call must be performed once for

every ridge in a traversal. Therefore, for complicated oracles, it will often perform
worse than Algorithm 2. On the other hand, the draw back of Algorithm 2 is
that a vector in Z2n needs to be stored for essentially every ridge-facet incidence
pair and that the algorithm is not as easy to parallelize as reverse search, where
interprocess communication is absent.

6 Implementation details

6.1 Handling geometric data

We briefly discuss how to compute properties of a cone given to us by an in-
equality description. The natural order of getting these properties is as follows:
lineality space, span and dimension, facets, a relative interior point, rays.

The lineality space can be computed by Gauss elimination, while linear pro-
gramming is needed for the span and the facets. Knowing the span of the cone
is equivalent to knowing the implied equations of the inequalities. We refer to
literature on the simplex algorithm. For the facets of a Gröbner cone, the in-
equality description is often highly redundant and a preprocessing step is useful.
A relative interior point can be computed with linear programming and the
computation of the rays can be reduced to an H-to-V conversion of a polytope.

Knowing the facets and rays it is a combinatorial task to extract the face
lattice. Indeed given the set of rays of C contained in face A of C, we find all
facets of A by, for each facet normal of C, picking the set of rays perpendicular
to the normal. This may give lower dimensional faces of A, so we need to take
the inclusion maximal sets of rays. They represent the facets of A.

Rather than computing the face lattice, it might be useful to know the orbits
of all cones in a fan. We suggest keeping a list of canonical representatives for
the orbits seen so far. Then we may run through the facets of F , and for each of
these repeatedly apply the method of the previous paragraph, but for each newly
computed face checking if its canonical representative has been seen already. A
fast implementation of Algorithm 3 is useful at this point.

6.2 Software

The presented algorithm has been implemented according to a generic program-
ming / object oriented paradigm in the software Gfan [10] and replaces old



12 A. N. Jensen

traversal strategies. Every oracle is derived from an abstract superclass. Start-
ing from version 0.5 are features for computing restrictions of Gröbner fans and
secondary fans. The oracle of Section 4.1 has been used in [4] to give a computer
proof that the 4× 4 minors of a 5 × 5 matrix are a tropical basis. In that paper
also a tropical variety with a symmetry group of order 28800 was computed,
explaining the need for handling symmetries. The Gfan software is written in
C++, uses the libraries GMP [9] and cddlib [7] by default, and works like a
Unix-style command line tool. In addition, Gfan can be linked to the floating
point LP-solver SoPlex [12]. In this case LP-certificates will be lifted to Q using
continued fractions, and checked. In case of failure, Gfan will fall back on cddlib.

Returning to Example 1, a two hour computation in Gfan gives the tropical
variety T (Icusp), exploiting a symmetry group of order 8. The 7-dimensional
fan has a 3-dimensional lineality space and f-vector (1, 1631, 7622, 11340, 5408).
A total of 1431 ridges and 680 facets were processed. With a suitably prepared
input file the computation can be done with the following command:

gfan_tropicaltraverse --symmetry < Icusp.startingcone

If the --symmetry option is left out the computation takes more than 15 hours.
This order of speed-up is only expected for expensive oracles and symmetry
groups that fit into memory. If the symmetry groups are sufficiently complicated
and oracle calls are cheap, it is possible that all time saved on oracle calls is
spent on computing canonical representatives.

We finish this paper by mentioning a few applications of Gfan and its algo-
rithms to tropical geometry. In tropical geometry a natural question to ask is
whether supp(T (Icusp)) is the support of a subfan of the secondary fan F1 of
the 2-dimensional Newton polytope of f . We may compute F2 := F1∧T (Icusp)
by restricting the computation of F1 to each of the 680 facets. After this we
pick a relative interior point from each facet of F2, and take the smallest sub-
fan F3 ⊆ F1 containing these vectors. The question now is if supp(F3) =
supp(T (Icusp)). By construction, supp(F3) ⊇ supp(T (Icusp)). The other in-
clusion can be checked by computing the restriction of Σ(Icusp) to each cone of
F3. Then we check for each corresponding initial ideal if it is monomial free. The
polyhedral fan computations can be handled with Algorithm 2 and its imple-
mentation in Gfan. However, in our case none of this is needed since the vector
(1) induces a regular subdivision whose secondary cone has dimension larger
than the dimension of supp(T (Icusp)).

References

1. David Avis and Komei Fukuda. A basis enumeration algorithm for convex hulls
and vertex enumeration of arrangements and polyhedra. Discrete Computational

Geometry, 8:295–313, 1992.
2. Tristram Bogart, Anders N. Jensen, David Speyer, Bernd Sturmfels, and Rekha R.

Thomas. Computing tropical varieties. J. Symbolic Comput., 42(1-2):54–73, 2007.
3. David Bremner, Mathieu Dutour Sikiric, and Achill Schürmann. Polyhedral rep-

resentation conversion up to symmetries. CRM proceedings, 48:45–72, 2009.



Traversing Symmetric Polyhedral Fans 13

4. Melody Chan, Anders Jensen, and Elena Rubei. The 4×4 minors of a 5×n matrix
are a tropical basis. 2009, arXiv:0912.5264.

5. Stéphane Collart, Michael Kalkbrener, and Daniel Mall. Converting bases with
the Gröbner walk. J. Symbolic Comput., 24(3-4):465–469, 1997. Computational
algebra and number theory (London, 1993).

6. Komei Fukuda. From the zonotope construction to the Minkowski addition of
convex polytopes. J. Symb. Comput., 38(4):1261–1272, 2004.

7. Komei Fukuda. cddlib reference manual, cddlib Version 094b. Swiss Federal
Institute of Technology, Lausanne and Zürich, Switzerland, 2005. http://www.

ifor.math.ethz.ch/∼fukuda/cdd home/cdd.html.
8. Komei Fukuda, Anders Jensen, and Rekha Thomas. Computing Gröbner fans.

Mathematics of Computation, 76:2189–2212, 2007.
9. Torbjörn Granlund et al. GNU multiple precision arithmetic library 4.3.1, 2009.

http://gmplib.org.
10. Anders N. Jensen. Gfan, a software system for Gröbner fans and tropical va-

rieties. Available at http://www.math.tu-berlin.de/∼jensen/software/gfan/

gfan.html.
11. Jörg Rambau. TOPCOM: Triangulations of point configurations and oriented

matroids. ZIB report, 02-17, 2002.
12. Roland Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD

thesis, Technische Universität Berlin, 1996. http://www.zib.de/Publications/

abstracts/TR-96-09/.


